sdk-hwV1.3/lichee/linux-4.9/drivers/devfreq/sunxi-mdfs.h

185 lines
5.8 KiB
C
Raw Permalink Normal View History

2024-05-07 10:09:20 +00:00
/*
* Copyright(c) 2018-2021 Allwinnertech Co., Ltd.
*
* Hardware dram frequency scaling, for which code run in dram.
*
* Author: frank <frank@allwinnertech.com>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*/
#define MDFS_DEBUG 0
/* helper for debug */
#if MDFS_DEBUG
static void reg_dump(struct sunxi_dramfreq *dramfreq)
{
printk("MC_MDFSCR:%x\n", readl(dramfreq->dramcom_base + MC_MDFSCR));
printk("VTFCR:%x\n", readl(dramfreq->dramctl_base + VTFCR));
printk("RFSHTMG:%x\n", readl(dramfreq->dramctl_base + RFSHTMG));
printk("DXnGCR0(0):%x\n", readl(dramfreq->dramctl_base + DXnGCR0(0)));
printk("DXnGCR0(1):%x\n", readl(dramfreq->dramctl_base + DXnGCR0(1)));
printk("DXnGCR0(2):%x\n", readl(dramfreq->dramctl_base + DXnGCR0(2)));
printk("DXnGCR0(3):%x\n", readl(dramfreq->dramctl_base + DXnGCR0(3)));
printk("ODTMAP:%x\n", readl(dramfreq->dramctl_base + ODTMAP));
printk("_DRAM_CLK_REG:%x\n", readl(dramfreq->ccu_base + _DRAM_CLK_REG));
printk("PGCR0:%x\n", readl(dramfreq->dramctl_base + PGCR0));
}
#endif
/* CONFIG_ARCH_SUN8IW16 */
#if defined(CONFIG_ARCH_SUN8IW16)
#include <linux/arm-smccc.h>
#include <linux/arisc/arisc.h>
static int mdfs_dfs(struct sunxi_dramfreq *dramfreq, unsigned int freq)
{
struct arm_smccc_res res;
arm_smccc_smc(ARM_SVC_ARISC_DRAM_DVFS_REQ, freq, 0, 0, 0, 0, 0, 0, &res);
return res.a0;
}
#endif
/* CONFIG_ARCH_SUN8IW18 */
#if defined(CONFIG_ARCH_SUN8IW18)
static int mdfs_dfs(struct sunxi_dramfreq *dramfreq, unsigned int freq)
{
struct dram_para_t *para = &dramfreq->dram_para;
unsigned int rank_num;
uint32_t reg_val;
unsigned int trefi, trfc, ctrl_freq;
unsigned int i = 0, n = 4;
unsigned int div, source;
unsigned int vtf ;
//bit0 must be 0 for new MDFS process
while (readl(dramfreq->dramcom_base + MC_MDFSCR) & 0x1)
;
//calculate source and divider
if (para->dram_tpr9 != 0) {
if (((para->dram_clk % freq) == 0) && ((para->dram_tpr9 % freq) == 0)) {
if ((para->dram_clk / freq) > (para->dram_tpr9 / freq)) {
source = 0;
div = para->dram_tpr9 / freq;
} else {
source = 1;
div = para->dram_clk / freq;
}
} else if ((para->dram_clk % freq) == 0) {
source = 1;
div = para->dram_clk / freq;
} else if ((para->dram_tpr9 % freq) == 0) {
source = 0;
div = para->dram_tpr9 / freq;
} else{
printk("MDFS fail!\n");
return 1;
}
} else {
source = (para->dram_tpr13 >> 6) & 0x1;
div = para->dram_clk / freq;
}
ctrl_freq = freq >> 1;
if ((para->dram_type == 3) || (para->dram_type == 2)) {
trefi = ((7800 * ctrl_freq) / 1000 + ((((7800 * ctrl_freq) % 1000) != 0) ? 1 : 0)) / 32;
trfc = (350 * ctrl_freq) / 1000 + ((((350 * ctrl_freq) % 1000) != 0) ? 1 : 0);
} else {
trefi = ((3900 * ctrl_freq) / 1000 + ((((3900 * ctrl_freq) % 1000) != 0) ? 1 : 0)) / 32;
trfc = (210 * ctrl_freq) / 1000 + ((((210 * ctrl_freq) % 1000) != 0) ? 1 : 0);
}
/*turn off vtf*/
vtf = (readl(dramfreq->dramctl_base + VTFCR) >> 8) & 0x3;
if (vtf) {
reg_val = readl(dramfreq->dramctl_base + VTFCR);
reg_val &= ~(0x3 << 8);
writel(reg_val, dramfreq->dramctl_base + VTFCR);
}
/* set dual buffer for timing change and power save */
reg_val = readl(dramfreq->dramcom_base + MC_MDFSCR);
/* VTC dual buffer can not be used */
reg_val |= (0x1U << 15);
writel(reg_val, dramfreq->dramcom_base + MC_MDFSCR);
/* change refresh timing */
reg_val = readl(dramfreq->dramctl_base + RFSHTMG);
reg_val &= ~((0xfff << 0) | (0xfff << 16));
reg_val |= ((trfc << 0) | (trefi << 16));
writel(reg_val, dramfreq->dramctl_base + RFSHTMG);
/* change ODT status for power save */
if (!((para->dram_tpr13 >> 12) & 0x1)) {
if (freq > 400) {
if ((para->dram_odt_en & 0x1)) {
for (i = 0; i < n; i++) {
//byte 0/byte 1
reg_val = readl(dramfreq->dramctl_base + DXnGCR0(i));
reg_val &= ~(0x3U << 4);
reg_val |= (0x0 << 4); //ODT dynamic
writel(reg_val, dramfreq->dramctl_base + DXnGCR0(i));
}
rank_num = readl(dramfreq->dramcom_base + MC_WORK_MODE) & 0x1;
if (rank_num) {
writel(0x303, dramfreq->dramctl_base + ODTMAP);
} else {
writel(0x201, dramfreq->dramctl_base + ODTMAP);
}
}
} else {
if ((para->dram_odt_en & 0x1)) {
for (i = 0; i < n; i++) {
//byte 0/byte 1
reg_val = readl(dramfreq->dramctl_base + DXnGCR0(i));
reg_val &= ~(0x3U << 4);
reg_val |= (0x2 << 4); //ODT off
writel(reg_val, dramfreq->dramctl_base + DXnGCR0(i));
}
writel(0x0, dramfreq->dramctl_base + ODTMAP);
}
}
}
//set the DRAM_CFG_REG divider in CCMU
reg_val = readl(dramfreq->ccu_base + _DRAM_CLK_REG);
reg_val &= ~(0xf << 0);
reg_val |= ((div - 1) << 0);
reg_val &= ~(0x3 << 24);
// reg_val |= (source << 24);
reg_val |= (0x1 << 24); //AW1821Ö»ÓÐPLL_DDR0£¬Ð´¹Ì¶¨Öµ
writel(reg_val, dramfreq->ccu_base + _DRAM_CLK_REG);
/* set MDFS register */
reg_val = readl(dramfreq->dramcom_base + MC_MDFSCR);
reg_val |= (0x1 << 4); //bypass
// reg_val |= (0x1 << 13); //pad hold
reg_val &= ~(0x1U << 1); //DFS mode
writel(reg_val, dramfreq->dramcom_base + MC_MDFSCR);
reg_val = readl(dramfreq->dramcom_base + MC_MDFSCR);
reg_val |= (0x1U << 0); //start mdfs
writel(reg_val, dramfreq->dramcom_base + MC_MDFSCR);
/* wait for process finished */
while (readl(dramfreq->dramcom_base + MC_MDFSCR) & 0x1)
;
/* turn off dual buffer */
reg_val = readl(dramfreq->dramcom_base + MC_MDFSCR);
reg_val &= ~(0x1U << 15);
// reg_val &= ~(0x1 << 13); //pad hold
writel(reg_val, dramfreq->dramcom_base + MC_MDFSCR);
/*turn on vtf*/
if (vtf) {
reg_val = readl(dramfreq->dramctl_base + VTFCR);
reg_val |= (0x3<<8);
writel(reg_val, dramfreq->dramctl_base + VTFCR);
}
return 0;
}
#endif /* CONFIG_ARCH_SUN8IW18 */