/********** This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. (See .) This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this library; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA **********/ // "liveMedia" // Copyright (c) 1996-2016 Live Networks, Inc. All rights reserved. // RTP sink for a common kind of payload format: Those which pack multiple, // complete codec frames (as many as possible) into each RTP packet. // Implementation #include "MultiFramedRTPSink.hh" #include "GroupsockHelper.hh" ////////// MultiFramedRTPSink ////////// void MultiFramedRTPSink::setPacketSizes(unsigned preferredPacketSize, unsigned maxPacketSize) { if (preferredPacketSize > maxPacketSize || preferredPacketSize == 0) return; // sanity check delete fOutBuf; fOutBuf = new OutPacketBuffer(preferredPacketSize, maxPacketSize); fOurMaxPacketSize = maxPacketSize; // save value, in case subclasses need it } #ifndef RTP_PAYLOAD_MAX_SIZE #define RTP_PAYLOAD_MAX_SIZE 1472 // Default max packet size (1500, minus allowance for IP, UDP, UMTP headers) // (Also, make it a multiple of 4 bytes, just in case that matters.) #endif #ifndef RTP_PAYLOAD_PREFERRED_SIZE #define RTP_PAYLOAD_PREFERRED_SIZE ((RTP_PAYLOAD_MAX_SIZE) < 1000 ? (RTP_PAYLOAD_MAX_SIZE) : 1000) #endif MultiFramedRTPSink::MultiFramedRTPSink(UsageEnvironment& env, Groupsock* rtpGS, unsigned char rtpPayloadType, unsigned rtpTimestampFrequency, char const* rtpPayloadFormatName, unsigned numChannels) : RTPSink(env, rtpGS, rtpPayloadType, rtpTimestampFrequency, rtpPayloadFormatName, numChannels), fOutBuf(NULL), fCurFragmentationOffset(0), fPreviousFrameEndedFragmentation(False), fOnSendErrorFunc(NULL), fOnSendErrorData(NULL) { setPacketSizes(1000, 8192);//(RTP_PAYLOAD_PREFERRED_SIZE), (RTP_PAYLOAD_MAX_SIZE)); } MultiFramedRTPSink::~MultiFramedRTPSink() { delete fOutBuf; } void MultiFramedRTPSink ::doSpecialFrameHandling(unsigned /*fragmentationOffset*/, unsigned char* /*frameStart*/, unsigned /*numBytesInFrame*/, struct timeval framePresentationTime, unsigned /*numRemainingBytes*/) { // default implementation: If this is the first frame in the packet, // use its presentationTime for the RTP timestamp: if (isFirstFrameInPacket()) { setTimestamp(framePresentationTime); } } Boolean MultiFramedRTPSink::allowFragmentationAfterStart() const { return False; // by default } Boolean MultiFramedRTPSink::allowOtherFramesAfterLastFragment() const { return False; // by default } Boolean MultiFramedRTPSink ::frameCanAppearAfterPacketStart(unsigned char const* /*frameStart*/, unsigned /*numBytesInFrame*/) const { return True; // by default } unsigned MultiFramedRTPSink::specialHeaderSize() const { // default implementation: Assume no special header: return 0; } unsigned MultiFramedRTPSink::frameSpecificHeaderSize() const { // default implementation: Assume no frame-specific header: return 0; } unsigned MultiFramedRTPSink::computeOverflowForNewFrame(unsigned newFrameSize) const { // default implementation: Just call numOverflowBytes() return fOutBuf->numOverflowBytes(newFrameSize); } void MultiFramedRTPSink::setMarkerBit() { unsigned rtpHdr = fOutBuf->extractWord(0); rtpHdr |= 0x00800000; fOutBuf->insertWord(rtpHdr, 0); } void MultiFramedRTPSink::setTimestamp(struct timeval framePresentationTime) { // First, convert the presentation time to a 32-bit RTP timestamp: fCurrentTimestamp = convertToRTPTimestamp(framePresentationTime); // Then, insert it into the RTP packet: fOutBuf->insertWord(fCurrentTimestamp, fTimestampPosition); } void MultiFramedRTPSink::setSpecialHeaderWord(unsigned word, unsigned wordPosition) { fOutBuf->insertWord(word, fSpecialHeaderPosition + 4*wordPosition); } void MultiFramedRTPSink::setSpecialHeaderBytes(unsigned char const* bytes, unsigned numBytes, unsigned bytePosition) { fOutBuf->insert(bytes, numBytes, fSpecialHeaderPosition + bytePosition); } void MultiFramedRTPSink::setFrameSpecificHeaderWord(unsigned word, unsigned wordPosition) { fOutBuf->insertWord(word, fCurFrameSpecificHeaderPosition + 4*wordPosition); } void MultiFramedRTPSink::setFrameSpecificHeaderBytes(unsigned char const* bytes, unsigned numBytes, unsigned bytePosition) { fOutBuf->insert(bytes, numBytes, fCurFrameSpecificHeaderPosition + bytePosition); } void MultiFramedRTPSink::setFramePadding(unsigned numPaddingBytes) { if (numPaddingBytes > 0) { // Add the padding bytes (with the last one being the padding size): unsigned char paddingBuffer[255]; //max padding memset(paddingBuffer, 0, numPaddingBytes); paddingBuffer[numPaddingBytes-1] = numPaddingBytes; fOutBuf->enqueue(paddingBuffer, numPaddingBytes); // Set the RTP padding bit: unsigned rtpHdr = fOutBuf->extractWord(0); rtpHdr |= 0x20000000; fOutBuf->insertWord(rtpHdr, 0); } } Boolean MultiFramedRTPSink::continuePlaying() { // Send the first packet. // (This will also schedule any future sends.) buildAndSendPacket(True); return True; } void MultiFramedRTPSink::stopPlaying() { fOutBuf->resetPacketStart(); fOutBuf->resetOffset(); fOutBuf->resetOverflowData(); // Then call the default "stopPlaying()" function: MediaSink::stopPlaying(); } void MultiFramedRTPSink::buildAndSendPacket(Boolean isFirstPacket) { fIsFirstPacket = isFirstPacket; // Set up the RTP header: unsigned rtpHdr = 0x80000000; // RTP version 2; marker ('M') bit not set (by default; it can be set later) rtpHdr |= (fRTPPayloadType<<16); rtpHdr |= fSeqNo; // sequence number fOutBuf->enqueueWord(rtpHdr); // Note where the RTP timestamp will go. // (We can't fill this in until we start packing payload frames.) fTimestampPosition = fOutBuf->curPacketSize(); fOutBuf->skipBytes(4); // leave a hole for the timestamp fOutBuf->enqueueWord(SSRC()); // Allow for a special, payload-format-specific header following the // RTP header: fSpecialHeaderPosition = fOutBuf->curPacketSize(); fSpecialHeaderSize = specialHeaderSize(); fOutBuf->skipBytes(fSpecialHeaderSize); // Begin packing as many (complete) frames into the packet as we can: fTotalFrameSpecificHeaderSizes = 0; fNoFramesLeft = False; fNumFramesUsedSoFar = 0; packFrame(); } void MultiFramedRTPSink::packFrame() { // Get the next frame. // First, skip over the space we'll use for any frame-specific header: fCurFrameSpecificHeaderPosition = fOutBuf->curPacketSize(); fCurFrameSpecificHeaderSize = frameSpecificHeaderSize(); fOutBuf->skipBytes(fCurFrameSpecificHeaderSize); fTotalFrameSpecificHeaderSizes += fCurFrameSpecificHeaderSize; // See if we have an overflow frame that was too big for the last pkt if (fOutBuf->haveOverflowData()) { // Use this frame before reading a new one from the source unsigned frameSize = fOutBuf->overflowDataSize(); struct timeval presentationTime = fOutBuf->overflowPresentationTime(); unsigned durationInMicroseconds = fOutBuf->overflowDurationInMicroseconds(); fOutBuf->useOverflowData(); afterGettingFrame1(frameSize, 0, presentationTime, durationInMicroseconds); } else { // Normal case: we need to read a new frame from the source if (fSource == NULL) return; fSource->getNextFrame(fOutBuf->curPtr(), fOutBuf->totalBytesAvailable(), afterGettingFrame, this, ourHandleClosure, this); } } void MultiFramedRTPSink ::afterGettingFrame(void* clientData, unsigned numBytesRead, unsigned numTruncatedBytes, struct timeval presentationTime, unsigned durationInMicroseconds) { MultiFramedRTPSink* sink = (MultiFramedRTPSink*)clientData; sink->afterGettingFrame1(numBytesRead, numTruncatedBytes, presentationTime, durationInMicroseconds); } void MultiFramedRTPSink ::afterGettingFrame1(unsigned frameSize, unsigned numTruncatedBytes, struct timeval presentationTime, unsigned durationInMicroseconds) { if (fIsFirstPacket) { // Record the fact that we're starting to play now: gettimeofday(&fNextSendTime, NULL); } fMostRecentPresentationTime = presentationTime; if (fInitialPresentationTime.tv_sec == 0 && fInitialPresentationTime.tv_usec == 0) { fInitialPresentationTime = presentationTime; } if (numTruncatedBytes > 0) { unsigned const bufferSize = fOutBuf->totalBytesAvailable(); envir() << "MultiFramedRTPSink::afterGettingFrame1(): The input frame data was too large for our buffer size (" << bufferSize << "). " << numTruncatedBytes << " bytes of trailing data was dropped! Correct this by increasing \"OutPacketBuffer::maxSize\" to at least " << OutPacketBuffer::maxSize + numTruncatedBytes << ", *before* creating this 'RTPSink'. (Current value is " << OutPacketBuffer::maxSize << ".)\n"; } unsigned curFragmentationOffset = fCurFragmentationOffset; unsigned numFrameBytesToUse = frameSize; unsigned overflowBytes = 0; // If we have already packed one or more frames into this packet, // check whether this new frame is eligible to be packed after them. // (This is independent of whether the packet has enough room for this // new frame; that check comes later.) if (fNumFramesUsedSoFar > 0) { if ((fPreviousFrameEndedFragmentation && !allowOtherFramesAfterLastFragment()) || !frameCanAppearAfterPacketStart(fOutBuf->curPtr(), frameSize)) { // Save away this frame for next time: numFrameBytesToUse = 0; fOutBuf->setOverflowData(fOutBuf->curPacketSize(), frameSize, presentationTime, durationInMicroseconds); } } fPreviousFrameEndedFragmentation = False; if (numFrameBytesToUse > 0) { // Check whether this frame overflows the packet if (fOutBuf->wouldOverflow(frameSize)) { // Don't use this frame now; instead, save it as overflow data, and // send it in the next packet instead. However, if the frame is too // big to fit in a packet by itself, then we need to fragment it (and // use some of it in this packet, if the payload format permits this.) if (isTooBigForAPacket(frameSize) && (fNumFramesUsedSoFar == 0 || allowFragmentationAfterStart())) { // We need to fragment this frame, and use some of it now: overflowBytes = computeOverflowForNewFrame(frameSize); numFrameBytesToUse -= overflowBytes; fCurFragmentationOffset += numFrameBytesToUse; } else { // We don't use any of this frame now: overflowBytes = frameSize; numFrameBytesToUse = 0; } fOutBuf->setOverflowData(fOutBuf->curPacketSize() + numFrameBytesToUse, overflowBytes, presentationTime, durationInMicroseconds); } else if (fCurFragmentationOffset > 0) { // This is the last fragment of a frame that was fragmented over // more than one packet. Do any special handling for this case: fCurFragmentationOffset = 0; fPreviousFrameEndedFragmentation = True; } } if (numFrameBytesToUse == 0 && frameSize > 0) { // Send our packet now, because we have filled it up: sendPacketIfNecessary(); } else { // Use this frame in our outgoing packet: unsigned char* frameStart = fOutBuf->curPtr(); fOutBuf->increment(numFrameBytesToUse); // do this now, in case "doSpecialFrameHandling()" calls "setFramePadding()" to append padding bytes // Here's where any payload format specific processing gets done: doSpecialFrameHandling(curFragmentationOffset, frameStart, numFrameBytesToUse, presentationTime, overflowBytes); ++fNumFramesUsedSoFar; // Update the time at which the next packet should be sent, based // on the duration of the frame that we just packed into it. // However, if this frame has overflow data remaining, then don't // count its duration yet. if (overflowBytes == 0) { fNextSendTime.tv_usec += durationInMicroseconds; fNextSendTime.tv_sec += fNextSendTime.tv_usec/1000000; fNextSendTime.tv_usec %= 1000000; } // Send our packet now if (i) it's already at our preferred size, or // (ii) (heuristic) another frame of the same size as the one we just // read would overflow the packet, or // (iii) it contains the last fragment of a fragmented frame, and we // don't allow anything else to follow this or // (iv) one frame per packet is allowed: if (fOutBuf->isPreferredSize() || fOutBuf->wouldOverflow(numFrameBytesToUse) || (fPreviousFrameEndedFragmentation && !allowOtherFramesAfterLastFragment()) || !frameCanAppearAfterPacketStart(fOutBuf->curPtr() - frameSize, frameSize) ) { // The packet is ready to be sent now sendPacketIfNecessary(); } else { // There's room for more frames; try getting another: packFrame(); } } } static unsigned const rtpHeaderSize = 12; Boolean MultiFramedRTPSink::isTooBigForAPacket(unsigned numBytes) const { // Check whether a 'numBytes'-byte frame - together with a RTP header and // (possible) special headers - would be too big for an output packet: // (Later allow for RTP extension header!) ##### numBytes += rtpHeaderSize + specialHeaderSize() + frameSpecificHeaderSize(); return fOutBuf->isTooBigForAPacket(numBytes); } void MultiFramedRTPSink::sendPacketIfNecessary() { if (fNumFramesUsedSoFar > 0) { // Send the packet: #ifdef TEST_LOSS if ((our_random()%10) != 0) // simulate 10% packet loss ##### #endif if (!fRTPInterface.sendPacket(fOutBuf->packet(), fOutBuf->curPacketSize())) { // if failure handler has been specified, call it if (fOnSendErrorFunc != NULL) (*fOnSendErrorFunc)(fOnSendErrorData); } ++fPacketCount; fTotalOctetCount += fOutBuf->curPacketSize(); fOctetCount += fOutBuf->curPacketSize() - rtpHeaderSize - fSpecialHeaderSize - fTotalFrameSpecificHeaderSizes; ++fSeqNo; // for next time } if (fOutBuf->haveOverflowData() && fOutBuf->totalBytesAvailable() > fOutBuf->totalBufferSize()/2) { // Efficiency hack: Reset the packet start pointer to just in front of // the overflow data (allowing for the RTP header and special headers), // so that we probably don't have to "memmove()" the overflow data // into place when building the next packet: unsigned newPacketStart = fOutBuf->curPacketSize() - (rtpHeaderSize + fSpecialHeaderSize + frameSpecificHeaderSize()); fOutBuf->adjustPacketStart(newPacketStart); } else { // Normal case: Reset the packet start pointer back to the start: fOutBuf->resetPacketStart(); } fOutBuf->resetOffset(); fNumFramesUsedSoFar = 0; if (fNoFramesLeft) { // We're done: onSourceClosure(); } else { // We have more frames left to send. Figure out when the next frame // is due to start playing, then make sure that we wait this long before // sending the next packet. #if 0 struct timeval timeNow; gettimeofday(&timeNow, NULL); int secsDiff = fNextSendTime.tv_sec - timeNow.tv_sec; int64_t uSecondsToGo = secsDiff*1000000 + (fNextSendTime.tv_usec - timeNow.tv_usec); if (uSecondsToGo < 0 || secsDiff < 0) { // sanity check: Make sure that the time-to-delay is non-negative: uSecondsToGo = 0; } #endif // Delay this amount of time //nextTask() = envir().taskScheduler().scheduleDelayedTask(uSecondsToGo, (TaskFunc*)sendNext, this); sendNext(this); } } // The following is called after each delay between packet sends: void MultiFramedRTPSink::sendNext(void* firstArg) { MultiFramedRTPSink* sink = (MultiFramedRTPSink*)firstArg; sink->buildAndSendPacket(False); } void MultiFramedRTPSink::ourHandleClosure(void* clientData) { MultiFramedRTPSink* sink = (MultiFramedRTPSink*)clientData; // There are no frames left, but we may have a partially built packet // to send sink->fNoFramesLeft = True; sink->sendPacketIfNecessary(); }