/* * Functions for working with the Flattened Device Tree data format * * Copyright 2009 Benjamin Herrenschmidt, IBM Corp * benh@kernel.crashing.org * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * version 2 as published by the Free Software Foundation. */ #include #include #include #include #include #include #include #include "libfdt/libfdt.h" #include #include #include "of_private.h" #define PTR_ALIGN(p, a) ((typeof(p))RT_ALIGN((unsigned long)(p), (a))) #define CONFIG_OF_EARLY_FLATTREE const void *of_get_flat_dt_prop(unsigned long node, const char *name, int *size); u64 dt_mem_next_cell(int s, const unsigned int **cellp); /** * of_fdt_is_compatible - Return true if given node from the given blob has * compat in its compatible list * @blob: A device tree blob * @node: node to test * @compat: compatible string to compare with compatible list. * * On match, returns a non-zero value with smaller values returned for more * specific compatible values. */ static int of_fdt_is_compatible(const void *blob, unsigned long node, const char *compat) { const char *cp; int cplen; unsigned long l, score = 0; cp = fdt_getprop(blob, node, "compatible", &cplen); if (cp == NULL) return 0; while (cplen > 0) { score++; if (of_compat_cmp(cp, compat, strlen(compat)) == 0) return score; l = strlen(cp) + 1; cp += l; cplen -= l; } return 0; } /** * of_fdt_is_big_endian - Return true if given node needs BE MMIO accesses * @blob: A device tree blob * @node: node to test * * Returns true if the node has a "big-endian" property, or if the kernel * was compiled for BE *and* the node has a "native-endian" property. * Returns false otherwise. */ bool of_fdt_is_big_endian(const void *blob, unsigned long node) { if (fdt_getprop(blob, node, "big-endian", NULL)) return true; return false; } static bool of_fdt_device_is_available(const void *blob, unsigned long node) { const char *status = fdt_getprop(blob, node, "status", NULL); if (!status) return true; if (!strcmp(status, "ok") || !strcmp(status, "okay")) return true; return false; } /** * of_fdt_match - Return true if node matches a list of compatible values */ int of_fdt_match(const void *blob, unsigned long node, const char *const *compat) { unsigned int tmp, score = 0; if (!compat) return 0; while (*compat) { tmp = of_fdt_is_compatible(blob, node, *compat); if (tmp && (score == 0 || (tmp < score))) score = tmp; compat++; } return score; } static void *unflatten_dt_alloc(void **mem, unsigned long size, unsigned long align) { void *res; *mem = PTR_ALIGN(*mem, align); res = *mem; *mem += size; return res; } static void populate_properties(const void *blob, int offset, void **mem, struct device_node *np, const char *nodename, bool dryrun) { struct property *pp, **pprev = NULL; int cur; bool has_name = false; pprev = &np->properties; for (cur = fdt_first_property_offset(blob, offset); cur >= 0; cur = fdt_next_property_offset(blob, cur)) { const unsigned int *val; const char *pname; int sz; val = fdt_getprop_by_offset(blob, cur, &pname, &sz); if (!val) { __wrn("Cannot locate property at 0x%x", cur); continue; } if (!pname) { __wrn("Cannot find property name at 0x%x", cur); continue; } if (!strcmp(pname, "name")) has_name = true; pp = unflatten_dt_alloc(mem, sizeof(struct property), __alignof__(struct property)); if (dryrun) continue; /* We accept flattened tree phandles either in * ePAPR-style "phandle" properties, or the * legacy "linux,phandle" properties. If both * appear and have different values, things * will get weird. Don't do that. */ if (!strcmp(pname, "phandle") || !strcmp(pname, "linux,phandle")) { if (!np->phandle) np->phandle = be32_to_cpup(val); } /* And we process the "ibm,phandle" property * used in pSeries dynamic device tree * stuff */ if (!strcmp(pname, "ibm,phandle")) np->phandle = be32_to_cpup(val); pp->name = (char *)pname; pp->length = sz; pp->value = (unsigned int *)val; *pprev = pp; pprev = &pp->next; } /* With version 0x10 we may not have the name property, * recreate it here from the unit name if absent */ if (!has_name) { const char *p = nodename, *ps = p, *pa = NULL; int len; while (*p) { if ((*p) == '@') pa = p; else if ((*p) == '/') ps = p + 1; p++; } if (pa < ps) pa = p; len = (pa - ps) + 1; pp = unflatten_dt_alloc(mem, sizeof(struct property) + len, __alignof__(struct property)); if (!dryrun) { pp->name = "name"; pp->length = len; pp->value = pp + 1; *pprev = pp; pprev = &pp->next; memcpy(pp->value, ps, len - 1); ((char *)pp->value)[len - 1] = 0; __log("fixed up name for %s -> %s", nodename, (char *)pp->value); } } if (!dryrun) *pprev = NULL; } static bool populate_node(const void *blob, int offset, void **mem, struct device_node *dad, struct device_node **pnp, bool dryrun) { struct device_node *np; const char *pathp; unsigned int l, allocl; pathp = fdt_get_name(blob, offset, &l); if (!pathp) { *pnp = NULL; return false; } allocl = ++l; np = unflatten_dt_alloc(mem, sizeof(struct device_node) + allocl, __alignof__(struct device_node)); if (!dryrun) { char *fn; of_node_init(np); np->full_name = fn = ((char *)np) + sizeof(*np); memcpy(fn, pathp, l); if (dad != NULL) { np->parent = dad; np->sibling = dad->child; dad->child = np; } } populate_properties(blob, offset, mem, np, pathp, dryrun); if (!dryrun) { np->name = of_get_property(np, "name", NULL); np->type = of_get_property(np, "device_type", NULL); if (!np->name) np->name = ""; if (!np->type) np->type = ""; } *pnp = np; return true; } static void reverse_nodes(struct device_node *parent) { struct device_node *child, *next; /* In-depth first */ child = parent->child; while (child) { reverse_nodes(child); child = child->sibling; } /* Reverse the nodes in the child list */ child = parent->child; parent->child = NULL; while (child) { next = child->sibling; child->sibling = parent->child; parent->child = child; child = next; } } /** * unflatten_dt_nodes - Alloc and populate a device_node from the flat tree * @blob: The parent device tree blob * @mem: Memory chunk to use for allocating device nodes and properties * @dad: Parent struct device_node * @nodepp: The device_node tree created by the call * * It returns the size of unflattened device tree or error code */ static int unflatten_dt_nodes(const void *blob, void *mem, struct device_node *dad, struct device_node **nodepp) { struct device_node *root; int offset = 0, depth = 0, initial_depth = 0; #define FDT_MAX_DEPTH 64 struct device_node *nps[FDT_MAX_DEPTH]; void *base = mem; bool dryrun = !base; if (nodepp) *nodepp = NULL; /* * We're unflattening device sub-tree if @dad is valid. There are * possibly multiple nodes in the first level of depth. We need * set @depth to 1 to make fdt_next_node() happy as it bails * immediately when negative @depth is found. Otherwise, the device * nodes except the first one won't be unflattened successfully. */ if (dad) depth = initial_depth = 1; root = dad; nps[depth] = dad; for (offset = 0; offset >= 0 && depth >= initial_depth; offset = fdt_next_node(blob, offset, &depth)) { if ((depth >= FDT_MAX_DEPTH)) continue; if (!of_fdt_device_is_available(blob, offset)) continue; if (!populate_node(blob, offset, &mem, nps[depth], &nps[depth+1], dryrun)) return mem - base; if (!dryrun && nodepp && !*nodepp) *nodepp = nps[depth+1]; if (!dryrun && !root) root = nps[depth+1]; } if (offset < 0 && offset != -FDT_ERR_NOTFOUND) { __err("Error %d processing FDT", offset); return -1; } /* * Reverse the child list. Some drivers assumes node order matches .dts * node order */ if (!dryrun) reverse_nodes(root); return mem - base; } /** * __unflatten_device_tree - create tree of device_nodes from flat blob * * unflattens a device-tree, creating the * tree of struct device_node. It also fills the "name" and "type" * pointers of the nodes so the normal device-tree walking functions * can be used. * @blob: The blob to expand * @dad: Parent device node * @mynodes: The device_node tree created by the call * @dt_alloc: An allocator that provides a virtual address to memory * for the resulting tree * @detached: if true set OF_DETACHED on @mynodes * * Returns NULL on failure or the memory chunk containing the unflattened * device tree on success. */ static void *of_dt_alloc(u64 size, u64 align) { void *p; p = rt_calloc(size, 1); return p; } void *__unflatten_device_tree(const void *blob, struct device_node *dad, struct device_node **mynodes, void *(*dt_alloc)(u64 size, u64 align), bool detached) { int size; void *mem; __log(" -> unflatten_device_tree()"); if (!blob) { __log("No device tree pointer"); return NULL; } __log("Unflattening device tree:"); __log("magic: %08x", fdt_magic(blob)); __log("size: %08x", fdt_totalsize(blob)); __log("version: %08x", fdt_version(blob)); if (fdt_check_header(blob)) { __err("Invalid device tree blob header"); return NULL; } /* First pass, scan for size */ size = unflatten_dt_nodes(blob, NULL, dad, NULL); if (size < 0) return NULL; size = RT_ALIGN(size, 4); __log(" size is %d, allocating...", size); /* Allocate memory for the expanded device tree */ mem = dt_alloc(size + 4, __alignof__(struct device_node)); if (!mem) return NULL; memset(mem, 0, size); *(unsigned int *)(mem + size) = 0xdeadbeef; __log(" unflattening %p...", mem); /* Second pass, do actual unflattening */ unflatten_dt_nodes(blob, mem, dad, mynodes); if (be32_to_cpup(mem + size) != 0xdeadbeef) __wrn("End of tree marker overwritten: %08x", be32_to_cpup(mem + size)); if (detached && mynodes) { of_node_set_flag(*mynodes, OF_DETACHED); __log("unflattened tree is detached"); } __log(" <- unflatten_device_tree()"); return mem; } static void *kernel_tree_alloc(u64 size, u64 align) { return rt_calloc(size, 1); } /** * of_fdt_unflatten_tree - create tree of device_nodes from flat blob * @blob: Flat device tree blob * @dad: Parent device node * @mynodes: The device tree created by the call * * unflattens the device-tree passed by the firmware, creating the * tree of struct device_node. It also fills the "name" and "type" * pointers of the nodes so the normal device-tree walking functions * can be used. * * Returns NULL on failure or the memory chunk containing the unflattened * device tree on success. */ void *of_fdt_unflatten_tree(const unsigned long *blob, struct device_node *dad, struct device_node **mynodes) { void *mem; mem = __unflatten_device_tree(blob, dad, mynodes, &kernel_tree_alloc, true); return mem; } /* Everything below here references initial_boot_params directly. */ int dt_root_addr_cells; int dt_root_size_cells; void *initial_boot_params; #ifdef CONFIG_OF_EARLY_FLATTREE static u32 of_fdt_crc32; /** * res_mem_reserve_reg() - reserve all memory described in 'reg' property */ static int __reserved_mem_reserve_reg(unsigned long node, const char *uname) { int t_len = (dt_root_addr_cells + dt_root_size_cells) * sizeof(unsigned int); uint32_t base, size; int len; const unsigned int *prop; int nomap, first = 1; prop = of_get_flat_dt_prop(node, "reg", &len); if (!prop) return -1; if (len && len % t_len != 0) { __err("Reserved memory: invalid reg property in '%s', skipping node.", uname); return -1; } nomap = of_get_flat_dt_prop(node, "no-map", NULL) != NULL; while (len >= t_len) { base = dt_mem_next_cell(dt_root_addr_cells, &prop); size = dt_mem_next_cell(dt_root_size_cells, &prop); #if 0 if (size && early_init_dt_reserve_memory_arch(base, size, nomap) == 0) __log("Reserved memory: reserved region for node '%s': base %pa, size %ld MiB", uname, &base, (unsigned long)size / SZ_1M); else __inf("Reserved memory: failed to reserve memory for node '%s': base %pa, size %ld MiB", uname, &base, (unsigned long)size / SZ_1M); len -= t_len; if (first) { fdt_reserved_mem_save_node(node, uname, base, size); first = 0; } #endif } return 0; } /** * __reserved_mem_check_root() - check if #size-cells, #address-cells provided * in /reserved-memory matches the values supported by the current implementation, * also check if ranges property has been provided */ static int __reserved_mem_check_root(unsigned long node) { const unsigned int *prop; prop = of_get_flat_dt_prop(node, "#size-cells", NULL); if (!prop || be32_to_cpup(prop) != dt_root_size_cells) return -1; prop = of_get_flat_dt_prop(node, "#address-cells", NULL); if (!prop || be32_to_cpup(prop) != dt_root_addr_cells) return -1; prop = of_get_flat_dt_prop(node, "ranges", NULL); if (!prop) return -1; return 0; } /** * fdt_scan_reserved_mem() - scan a single FDT node for reserved memory */ #if 0 static int __fdt_scan_reserved_mem(unsigned long node, const char *uname, int depth, void *data) { static int found; int err; if (!found && depth == 1 && strcmp(uname, "reserved-memory") == 0) { if (__reserved_mem_check_root(node) != 0) { __err("Reserved memory: unsupported node format, ignoring"); /* break scan */ return 1; } found = 1; /* scan next node */ return 0; } else if (!found) { /* scan next node */ return 0; } else if (found && depth < 2) { /* scanning of /reserved-memory has been finished */ return 1; } if (!of_fdt_device_is_available(initial_boot_params, node)) return 0; err = __reserved_mem_reserve_reg(node, uname); if (err == -1 && of_get_flat_dt_prop(node, "size", NULL)) fdt_reserved_mem_save_node(node, uname, 0, 0); /* scan next node */ return 0; } /** * early_init_fdt_scan_reserved_mem() - create reserved memory regions * * This function grabs memory from early allocator for device exclusive use * defined in device tree structures. It should be called by arch specific code * once the early allocator (i.e. memblock) has been fully activated. */ void early_init_fdt_scan_reserved_mem(void) { int n; u64 base, size; if (!initial_boot_params) return; /* Process header /memreserve/ fields */ for (n = 0; ; n++) { fdt_get_mem_rsv(initial_boot_params, n, &base, &size); if (!size) break; early_init_dt_reserve_memory_arch(base, size, 0); } of_scan_flat_dt(__fdt_scan_reserved_mem, NULL); fdt_init_reserved_mem(); } /** * early_init_fdt_reserve_self() - reserve the memory used by the FDT blob */ void early_init_fdt_reserve_self(void) { if (!initial_boot_params) return; /* Reserve the dtb region */ early_init_dt_reserve_memory_arch(__pa(initial_boot_params), fdt_totalsize(initial_boot_params), 0); } #endif /** * of_scan_flat_dt - scan flattened tree blob and call callback on each. * @it: callback function * @data: context data pointer * * This function is used to scan the flattened device-tree, it is * used to extract the memory information at boot before we can * unflatten the tree */ int of_scan_flat_dt(int (*it)(unsigned long node, const char *uname, int depth, void *data), void *data) { const void *blob = initial_boot_params; const char *pathp; int offset, rc = 0, depth = -1; if (!blob) return 0; for (offset = fdt_next_node(blob, -1, &depth); offset >= 0 && depth >= 0 && !rc; offset = fdt_next_node(blob, offset, &depth)) { pathp = fdt_get_name(blob, offset, NULL); if (*pathp == '/') pathp = kbasename(pathp); rc = it(offset, pathp, depth, data); } return rc; } /** * of_scan_flat_dt_subnodes - scan sub-nodes of a node call callback on each. * @it: callback function * @data: context data pointer * * This function is used to scan sub-nodes of a node. */ int of_scan_flat_dt_subnodes(unsigned long parent, int (*it)(unsigned long node, const char *uname, void *data), void *data) { const void *blob = initial_boot_params; int node; fdt_for_each_subnode(node, blob, parent) { const char *pathp; int rc; pathp = fdt_get_name(blob, node, NULL); if (*pathp == '/') pathp = kbasename(pathp); rc = it(node, pathp, data); if (rc) return rc; } return 0; } /** * of_get_flat_dt_subnode_by_name - get the subnode by given name * * @node: the parent node * @uname: the name of subnode * @return offset of the subnode, or -FDT_ERR_NOTFOUND if there is none */ int of_get_flat_dt_subnode_by_name(unsigned long node, const char *uname) { return fdt_subnode_offset(initial_boot_params, node, uname); } /** * of_get_flat_dt_root - find the root node in the flat blob */ unsigned long of_get_flat_dt_root(void) { return 0; } /** * of_get_flat_dt_size - Return the total size of the FDT */ int of_get_flat_dt_size(void) { return fdt_totalsize(initial_boot_params); } /** * of_get_flat_dt_prop - Given a node in the flat blob, return the property ptr * * This function can be used within scan_flattened_dt callback to get * access to properties */ const void *of_get_flat_dt_prop(unsigned long node, const char *name, int *size) { return fdt_getprop(initial_boot_params, node, name, size); } /** * of_flat_dt_is_compatible - Return true if given node has compat in compatible list * @node: node to test * @compat: compatible string to compare with compatible list. */ int of_flat_dt_is_compatible(unsigned long node, const char *compat) { return of_fdt_is_compatible(initial_boot_params, node, compat); } /** * of_flat_dt_match - Return true if node matches a list of compatible values */ int of_flat_dt_match(unsigned long node, const char *const *compat) { return of_fdt_match(initial_boot_params, node, compat); } /** * of_get_flat_dt_prop - Given a node in the flat blob, return the phandle */ uint32_t of_get_flat_dt_phandle(unsigned long node) { return fdt_get_phandle(initial_boot_params, node); } struct fdt_scan_status { const char *name; int namelen; int depth; int found; int (*iterator)(unsigned long node, const char *uname, int depth, void *data); void *data; }; const char * of_flat_dt_get_machine_name(void) { const char *name; unsigned long dt_root = of_get_flat_dt_root(); name = of_get_flat_dt_prop(dt_root, "model", NULL); if (!name) name = of_get_flat_dt_prop(dt_root, "compatible", NULL); return name; } /** * of_flat_dt_match_machine - Iterate match tables to find matching machine. * * @default_match: A machine specific ptr to return in case of no match. * @get_next_compat: callback function to return next compatible match table. * * Iterate through machine match tables to find the best match for the machine * compatible string in the FDT. */ const void * of_flat_dt_match_machine(const void *default_match, const void * (*get_next_compat)(const char * const**)) { const void *data = NULL; const void *best_data = default_match; const char *const *compat; unsigned long dt_root; unsigned int best_score = ~1, score = 0; dt_root = of_get_flat_dt_root(); while ((data = get_next_compat(&compat))) { score = of_flat_dt_match(dt_root, compat); if (score > 0 && score < best_score) { best_data = data; best_score = score; } } if (!best_data) { const char *prop; int size; __err(" unrecognized device tree list:[ "); prop = of_get_flat_dt_prop(dt_root, "compatible", &size); if (prop) { while (size > 0) { printk("'%s' ", prop); size -= strlen(prop) + 1; prop += strlen(prop) + 1; } } printk("]"); return NULL; } __inf("Machine model: %s", of_flat_dt_get_machine_name()); return best_data; } #ifdef CONFIG_BLK_DEV_INITRD #ifndef __early_init_dt_declare_initrd static void __early_init_dt_declare_initrd(unsigned long start, unsigned long end) { initrd_start = (unsigned long)__va(start); initrd_end = (unsigned long)__va(end); initrd_below_start_ok = 1; } #endif /** * early_init_dt_check_for_initrd - Decode initrd location from flat tree * @node: reference to node containing initrd location ('chosen') */ static void early_init_dt_check_for_initrd(unsigned long node) { u64 start, end; int len; const unsigned int *prop; __log("Looking for initrd properties... "); prop = of_get_flat_dt_prop(node, "linux,initrd-start", &len); if (!prop) return; start = of_read_number(prop, len/4); prop = of_get_flat_dt_prop(node, "linux,initrd-end", &len); if (!prop) return; end = of_read_number(prop, len/4); __early_init_dt_declare_initrd(start, end); __log("initrd_start=0x%llx initrd_end=0x%llx", (unsigned long long)start, (unsigned long long)end); } #else static inline void early_init_dt_check_for_initrd(unsigned long node) { } #endif /* CONFIG_BLK_DEV_INITRD */ #ifdef CONFIG_SERIAL_EARLYCON int early_init_dt_scan_chosen_stdout(void) { int offset; const char *p, *q, *options = NULL; int l; const struct earlycon_id *match; const void *fdt = initial_boot_params; offset = fdt_path_offset(fdt, "/chosen"); if (offset < 0) offset = fdt_path_offset(fdt, "/chosen@0"); if (offset < 0) return -1; p = fdt_getprop(fdt, offset, "stdout-path", &l); if (!p) p = fdt_getprop(fdt, offset, "linux,stdout-path", &l); if (!p || !l) return -1; q = strchrnul(p, ':'); if (*q != '\0') options = q + 1; l = q - p; /* Get the node specified by stdout-path */ offset = fdt_path_offset_namelen(fdt, p, l); if (offset < 0) { __wrn("earlycon: stdout-path %.*s not found", l, p); return 0; } for (match = __earlycon_table; match < __earlycon_table_end; match++) { if (!match->compatible[0]) continue; if (fdt_node_check_compatible(fdt, offset, match->compatible)) continue; of_setup_earlycon(match, offset, options); return 0; } return -1; } #endif /** * early_init_dt_scan_root - fetch the top level address and size cells */ int early_init_dt_scan_root(unsigned long node, const char *uname, int depth, void *data) { const unsigned int *prop; if (depth != 0) return 0; dt_root_size_cells = OF_ROOT_NODE_SIZE_CELLS_DEFAULT; dt_root_addr_cells = OF_ROOT_NODE_ADDR_CELLS_DEFAULT; prop = of_get_flat_dt_prop(node, "#size-cells", NULL); if (prop) dt_root_size_cells = be32_to_cpup(prop); __log("dt_root_size_cells = %x", dt_root_size_cells); prop = of_get_flat_dt_prop(node, "#address-cells", NULL); if (prop) dt_root_addr_cells = be32_to_cpup(prop); __log("dt_root_addr_cells = %x", dt_root_addr_cells); /* break now */ return 1; } u64 dt_mem_next_cell(int s, const unsigned int **cellp) { const unsigned int *p = *cellp; *cellp = p + s; return of_read_number(p, s); } #if 0 /** * early_init_dt_scan_memory - Look for and parse memory nodes */ int early_init_dt_scan_memory(unsigned long node, const char *uname, int depth, void *data) { const char *type = of_get_flat_dt_prop(node, "device_type", NULL); const unsigned int *reg, *endp; int l; bool hotpluggable; /* We are scanning "memory" nodes only */ if (type == NULL) { /* * The longtrail doesn't have a device_type on the * /memory node, so look for the node called /memory@0. */ if (depth != 1 || strcmp(uname, "memory@0") != 0) return 0; } else if (strcmp(type, "memory") != 0) return 0; reg = of_get_flat_dt_prop(node, "linux,usable-memory", &l); if (reg == NULL) reg = of_get_flat_dt_prop(node, "reg", &l); if (reg == NULL) return 0; endp = reg + (l / sizeof(unsigned int)); hotpluggable = of_get_flat_dt_prop(node, "hotpluggable", NULL); __log("memory scan node %s, reg size %d", uname, l); while ((endp - reg) >= (dt_root_addr_cells + dt_root_size_cells)) { u64 base, size; base = dt_mem_next_cell(dt_root_addr_cells, ®); size = dt_mem_next_cell(dt_root_size_cells, ®); if (size == 0) continue; __log(" - %llx , %llx", (unsigned long long)base, (unsigned long long)size); early_init_dt_add_memory_arch(base, size); if (!hotpluggable) continue; if (early_init_dt_mark_hotplug_memory_arch(base, size)) __wrn("failed to mark hotplug range 0x%llx - 0x%llx", base, base + size); } return 0; } int early_init_dt_scan_chosen(unsigned long node, const char *uname, int depth, void *data) { int l; const char *p; __log("search \"chosen\", depth: %d, uname: %s", depth, uname); if (depth != 1 || !data || (strcmp(uname, "chosen") != 0 && strcmp(uname, "chosen@0") != 0)) return 0; early_init_dt_check_for_initrd(node); /* Retrieve command line */ p = of_get_flat_dt_prop(node, "bootargs", &l); if (p != NULL && l > 0) strlcpy(data, p, min((int)l, COMMAND_LINE_SIZE)); /* * CONFIG_CMDLINE is meant to be a default in case nothing else * managed to set the command line, unless CONFIG_CMDLINE_FORCE * is set in which case we override whatever was found earlier. */ #ifdef CONFIG_CMDLINE #if defined(CONFIG_CMDLINE_EXTEND) strlcat(data, " ", COMMAND_LINE_SIZE); strlcat(data, CONFIG_CMDLINE, COMMAND_LINE_SIZE); #elif defined(CONFIG_CMDLINE_FORCE) strlcpy(data, CONFIG_CMDLINE, COMMAND_LINE_SIZE); #else /* No arguments from boot loader, use kernel's cmdl*/ if (!((char *)data)[0]) strlcpy(data, CONFIG_CMDLINE, COMMAND_LINE_SIZE); #endif #endif /* CONFIG_CMDLINE */ __log("Command line is: %s", (char*)data); /* break now */ return 1; } #endif #ifdef CONFIG_HAVE_MEMBLOCK #ifndef MIN_MEMBLOCK_ADDR #define MIN_MEMBLOCK_ADDR __pa(PAGE_OFFSET) #endif #ifndef MAX_MEMBLOCK_ADDR #define MAX_MEMBLOCK_ADDR ((uint32_t)~0) #endif void early_init_dt_add_memory_arch(u64 base, u64 size) { const u64 phys_offset = MIN_MEMBLOCK_ADDR; if (!PAGE_ALIGNED(base)) { if (size < PAGE_SIZE - (base & ~PAGE_MASK)) { __wrn("Ignoring memory block 0x%llx - 0x%llx", base, base + size); return; } size -= PAGE_SIZE - (base & ~PAGE_MASK); base = PAGE_ALIGN(base); } size &= PAGE_MASK; if (base > MAX_MEMBLOCK_ADDR) { __wrn("Ignoring memory block 0x%llx - 0x%llx", base, base + size); return; } if (base + size - 1 > MAX_MEMBLOCK_ADDR) { __wrn("Ignoring memory range 0x%llx - 0x%llx", ((u64)MAX_MEMBLOCK_ADDR) + 1, base + size); size = MAX_MEMBLOCK_ADDR - base + 1; } if (base + size < phys_offset) { __wrn("Ignoring memory block 0x%llx - 0x%llx", base, base + size); return; } if (base < phys_offset) { __wrn("Ignoring memory range 0x%llx - 0x%llx", base, phys_offset); size -= phys_offset - base; base = phys_offset; } memblock_add(base, size); } int early_init_dt_mark_hotplug_memory_arch(u64 base, u64 size) { return memblock_mark_hotplug(base, size); } int early_init_dt_reserve_memory_arch(uint32_t base, uint32_t size, bool nomap) { if (nomap) return memblock_remove(base, size); return memblock_reserve(base, size); } /* * called from unflatten_device_tree() to bootstrap devicetree itself * Architectures can override this definition if memblock isn't used */ void * early_init_dt_alloc_memory_arch(u64 size, u64 align) { return __va(memblock_alloc(size, align)); } #else void early_init_dt_add_memory_arch(u64 base, u64 size) { } int early_init_dt_mark_hotplug_memory_arch(u64 base, u64 size) { return -1; } int early_init_dt_reserve_memory_arch(uint32_t base, uint32_t size, bool nomap) { __err("Reserved memory not supported, ignoring range %pa - %pa%s", &base, &size, nomap ? " (nomap)" : ""); return -1; } void *early_init_dt_alloc_memory_arch(u64 size, u64 align) { return NULL; } #endif bool early_init_dt_verify(void *params) { if (!params) return false; /* check device tree validity */ if (fdt_check_header(params)) return false; /* Setup flat device-tree pointer */ initial_boot_params = params; /*of_fdt_crc32 = crc32_be(~0, initial_boot_params,*/ /*fdt_totalsize(initial_boot_params));*/ return true; } void early_init_dt_scan_nodes(void) { /* Retrieve various information from the /chosen node */ of_scan_flat_dt(NULL, NULL); /* Initialize {size,address}-cells info */ of_scan_flat_dt(NULL, NULL); /* Setup memory, calling early_init_dt_add_memory_arch */ of_scan_flat_dt(NULL, NULL); } bool early_init_dt_scan(void *params) { bool status; status = early_init_dt_verify(params); if (!status) return false; early_init_dt_scan_nodes(); return true; } /** * unflatten_device_tree - create tree of device_nodes from flat blob * * unflattens the device-tree passed by the firmware, creating the * tree of struct device_node. It also fills the "name" and "type" * pointers of the nodes so the normal device-tree walking functions * can be used. */ extern unsigned char blob_input_dtb_start[]; extern unsigned char blob_input_dtb_end[]; void unflatten_device_tree(void) { __unflatten_device_tree(blob_input_dtb_start, NULL, &of_root, of_dt_alloc, false); /* Get pointer to "/chosen" and "/aliases" nodes for use everywhere */ of_alias_scan(early_init_dt_alloc_memory_arch); unittest_unflatten_overlay_base(); } /** * of_irq_find_parent - Given a device node, find its interrupt parent node * @child: pointer to device node * * Returns a pointer to the interrupt parent node, or NULL if the interrupt * parent could not be determined. */ struct device_node *of_irq_find_parent(struct device_node *child) { struct device_node *p; phandle parent; if (!of_node_get(child)) return NULL; do { if (of_property_read_u32(child, "interrupt-parent", &parent)) { p = of_get_parent(child); } else { p = of_find_node_by_phandle(parent); } of_node_put(child); child = p; } while (p && of_get_property(p, "#interrupt-cells", NULL) == NULL); return p; } void dt_list_all_nodes(void) { struct device_node *dn = of_find_all_nodes(NULL); const void *compatable = NULL; while (dn) { compatable = of_get_property(dn, "compatible", NULL); __log("name %s, type %s, full_name %s, cmpat:%s, secodary %p, ops %p", \ dn->name, dn->type, dn->full_name, compatable, dn->fwnode.secondary, dn->fwnode.ops); dn = of_find_all_nodes(dn); } } /** * unflatten_and_copy_device_tree - copy and create tree of device_nodes from flat blob * * Copies and unflattens the device-tree passed by the firmware, creating the * tree of struct device_node. It also fills the "name" and "type" * pointers of the nodes so the normal device-tree walking functions * can be used. This should only be used when the FDT memory has not been * reserved such is the case when the FDT is built-in to the kernel init * section. If the FDT memory is reserved already then unflatten_device_tree * should be used instead. */ #if 0 void unflatten_and_copy_device_tree(void) { int size; void *dt; if (!initial_boot_params) { __wrn("No valid device tree found, continuing without"); return; } size = fdt_totalsize(initial_boot_params); dt = early_init_dt_alloc_memory_arch(size, roundup_pow_of_two(FDT_V17_SIZE)); if (dt) { memcpy(dt, initial_boot_params, size); initial_boot_params = dt; } unflatten_device_tree(); } #endif #ifdef CONFIG_SYSFS static ssize_t of_fdt_raw_read(struct file *filp, struct kobject *kobj, struct bin_attribute *bin_attr, char *buf, loff_t off, size_t count) { memcpy(buf, initial_boot_params + off, count); return count; } static int of_fdt_raw_init(void) { static struct bin_attribute of_fdt_raw_attr = __BIN_ATTR(fdt, S_IRUSR, of_fdt_raw_read, NULL, 0); if (!initial_boot_params) return 0; if (of_fdt_crc32 != crc32_be(~0, initial_boot_params, fdt_totalsize(initial_boot_params))) { __wrn("not creating '/sys/firmware/fdt': CRC check failed"); return 0; } of_fdt_raw_attr.size = fdt_totalsize(initial_boot_params); return sysfs_create_bin_file(firmware_kobj, &of_fdt_raw_attr); } late_initcall(of_fdt_raw_init); #endif #endif /* CONFIG_OF_EARLY_FLATTREE */