/********** This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. (See .) This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this library; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA **********/ // "liveMedia" // Copyright (c) 1996-2016 Live Networks, Inc. All rights reserved. // RTP Sources // Implementation #include "RTPSource.hh" #include "GroupsockHelper.hh" ////////// RTPSource ////////// Boolean RTPSource::lookupByName(UsageEnvironment& env, char const* sourceName, RTPSource*& resultSource) { resultSource = NULL; // unless we succeed MediaSource* source; if (!MediaSource::lookupByName(env, sourceName, source)) return False; if (!source->isRTPSource()) { env.setResultMsg(sourceName, " is not a RTP source"); return False; } resultSource = (RTPSource*)source; return True; } Boolean RTPSource::hasBeenSynchronizedUsingRTCP() { return fCurPacketHasBeenSynchronizedUsingRTCP; } Boolean RTPSource::isRTPSource() const { return True; } RTPSource::RTPSource(UsageEnvironment& env, Groupsock* RTPgs, unsigned char rtpPayloadFormat, u_int32_t rtpTimestampFrequency) : FramedSource(env), fRTPInterface(this, RTPgs), fCurPacketHasBeenSynchronizedUsingRTCP(False), fLastReceivedSSRC(0), fRTCPInstanceForMultiplexedRTCPPackets(NULL), fRTPPayloadFormat(rtpPayloadFormat), fTimestampFrequency(rtpTimestampFrequency), fSSRC(our_random32()), fEnableRTCPReports(True) { fReceptionStatsDB = new RTPReceptionStatsDB(); } RTPSource::~RTPSource() { delete fReceptionStatsDB; } void RTPSource::getAttributes() const { envir().setResultMsg(""); // Fix later to get attributes from header ##### } ////////// RTPReceptionStatsDB ////////// RTPReceptionStatsDB::RTPReceptionStatsDB() : fTable(HashTable::create(ONE_WORD_HASH_KEYS)), fTotNumPacketsReceived(0) { reset(); } void RTPReceptionStatsDB::reset() { fNumActiveSourcesSinceLastReset = 0; Iterator iter(*this); RTPReceptionStats* stats; while ((stats = iter.next()) != NULL) { stats->reset(); } } RTPReceptionStatsDB::~RTPReceptionStatsDB() { // First, remove and delete all stats records from the table: RTPReceptionStats* stats; while ((stats = (RTPReceptionStats*)fTable->RemoveNext()) != NULL) { delete stats; } // Then, delete the table itself: delete fTable; } void RTPReceptionStatsDB ::noteIncomingPacket(u_int32_t SSRC, u_int16_t seqNum, u_int32_t rtpTimestamp, unsigned timestampFrequency, Boolean useForJitterCalculation, struct timeval& resultPresentationTime, Boolean& resultHasBeenSyncedUsingRTCP, unsigned packetSize) { ++fTotNumPacketsReceived; RTPReceptionStats* stats = lookup(SSRC); if (stats == NULL) { // This is the first time we've heard from this SSRC. // Create a new record for it: stats = new RTPReceptionStats(SSRC, seqNum); if (stats == NULL) return; add(SSRC, stats); } if (stats->numPacketsReceivedSinceLastReset() == 0) { ++fNumActiveSourcesSinceLastReset; } stats->noteIncomingPacket(seqNum, rtpTimestamp, timestampFrequency, useForJitterCalculation, resultPresentationTime, resultHasBeenSyncedUsingRTCP, packetSize); } void RTPReceptionStatsDB ::noteIncomingSR(u_int32_t SSRC, u_int32_t ntpTimestampMSW, u_int32_t ntpTimestampLSW, u_int32_t rtpTimestamp) { RTPReceptionStats* stats = lookup(SSRC); if (stats == NULL) { // This is the first time we've heard of this SSRC. // Create a new record for it: stats = new RTPReceptionStats(SSRC); if (stats == NULL) return; add(SSRC, stats); } stats->noteIncomingSR(ntpTimestampMSW, ntpTimestampLSW, rtpTimestamp); } void RTPReceptionStatsDB::removeRecord(u_int32_t SSRC) { RTPReceptionStats* stats = lookup(SSRC); if (stats != NULL) { long SSRC_long = (long)SSRC; fTable->Remove((char const*)SSRC_long); delete stats; } } RTPReceptionStatsDB::Iterator ::Iterator(RTPReceptionStatsDB& receptionStatsDB) : fIter(HashTable::Iterator::create(*(receptionStatsDB.fTable))) { } RTPReceptionStatsDB::Iterator::~Iterator() { delete fIter; } RTPReceptionStats* RTPReceptionStatsDB::Iterator::next(Boolean includeInactiveSources) { char const* key; // dummy // If asked, skip over any sources that haven't been active // since the last reset: RTPReceptionStats* stats; do { stats = (RTPReceptionStats*)(fIter->next(key)); } while (stats != NULL && !includeInactiveSources && stats->numPacketsReceivedSinceLastReset() == 0); return stats; } RTPReceptionStats* RTPReceptionStatsDB::lookup(u_int32_t SSRC) const { long SSRC_long = (long)SSRC; return (RTPReceptionStats*)(fTable->Lookup((char const*)SSRC_long)); } void RTPReceptionStatsDB::add(u_int32_t SSRC, RTPReceptionStats* stats) { long SSRC_long = (long)SSRC; fTable->Add((char const*)SSRC_long, stats); } ////////// RTPReceptionStats ////////// RTPReceptionStats::RTPReceptionStats(u_int32_t SSRC, u_int16_t initialSeqNum) { initSeqNum(initialSeqNum); init(SSRC); } RTPReceptionStats::RTPReceptionStats(u_int32_t SSRC) { init(SSRC); } RTPReceptionStats::~RTPReceptionStats() { } void RTPReceptionStats::init(u_int32_t SSRC) { fSSRC = SSRC; fTotNumPacketsReceived = 0; fTotBytesReceived_hi = fTotBytesReceived_lo = 0; fBaseExtSeqNumReceived = 0; fHighestExtSeqNumReceived = 0; fHaveSeenInitialSequenceNumber = False; fLastTransit = ~0; fPreviousPacketRTPTimestamp = 0; fJitter = 0.0; fLastReceivedSR_NTPmsw = fLastReceivedSR_NTPlsw = 0; fLastReceivedSR_time.tv_sec = fLastReceivedSR_time.tv_usec = 0; fLastPacketReceptionTime.tv_sec = fLastPacketReceptionTime.tv_usec = 0; fMinInterPacketGapUS = 0x7FFFFFFF; fMaxInterPacketGapUS = 0; fTotalInterPacketGaps.tv_sec = fTotalInterPacketGaps.tv_usec = 0; fHasBeenSynchronized = False; fSyncTime.tv_sec = fSyncTime.tv_usec = 0; reset(); } void RTPReceptionStats::initSeqNum(u_int16_t initialSeqNum) { fBaseExtSeqNumReceived = 0x10000 | initialSeqNum; fHighestExtSeqNumReceived = 0x10000 | initialSeqNum; fHaveSeenInitialSequenceNumber = True; } #ifndef MILLION #define MILLION 1000000 #endif void RTPReceptionStats ::noteIncomingPacket(u_int16_t seqNum, u_int32_t rtpTimestamp, unsigned timestampFrequency, Boolean useForJitterCalculation, struct timeval& resultPresentationTime, Boolean& resultHasBeenSyncedUsingRTCP, unsigned packetSize) { if (!fHaveSeenInitialSequenceNumber) initSeqNum(seqNum); ++fNumPacketsReceivedSinceLastReset; ++fTotNumPacketsReceived; u_int32_t prevTotBytesReceived_lo = fTotBytesReceived_lo; fTotBytesReceived_lo += packetSize; if (fTotBytesReceived_lo < prevTotBytesReceived_lo) { // wrap-around ++fTotBytesReceived_hi; } // Check whether the new sequence number is the highest yet seen: unsigned oldSeqNum = (fHighestExtSeqNumReceived&0xFFFF); unsigned seqNumCycle = (fHighestExtSeqNumReceived&0xFFFF0000); unsigned seqNumDifference = (unsigned)((int)seqNum-(int)oldSeqNum); unsigned newSeqNum = 0; if (seqNumLT((u_int16_t)oldSeqNum, seqNum)) { // This packet was not an old packet received out of order, so check it: if (seqNumDifference >= 0x8000) { // The sequence number wrapped around, so start a new cycle: seqNumCycle += 0x10000; } newSeqNum = seqNumCycle|seqNum; if (newSeqNum > fHighestExtSeqNumReceived) { fHighestExtSeqNumReceived = newSeqNum; } } else if (fTotNumPacketsReceived > 1) { // This packet was an old packet received out of order if ((int)seqNumDifference >= 0x8000) { // The sequence number wrapped around, so switch to an old cycle: seqNumCycle -= 0x10000; } newSeqNum = seqNumCycle|seqNum; if (newSeqNum < fBaseExtSeqNumReceived) { fBaseExtSeqNumReceived = newSeqNum; } } // Record the inter-packet delay struct timeval timeNow; gettimeofday(&timeNow, NULL); if (fLastPacketReceptionTime.tv_sec != 0 || fLastPacketReceptionTime.tv_usec != 0) { unsigned gap = (timeNow.tv_sec - fLastPacketReceptionTime.tv_sec)*MILLION + timeNow.tv_usec - fLastPacketReceptionTime.tv_usec; if (gap > fMaxInterPacketGapUS) { fMaxInterPacketGapUS = gap; } if (gap < fMinInterPacketGapUS) { fMinInterPacketGapUS = gap; } fTotalInterPacketGaps.tv_usec += gap; if (fTotalInterPacketGaps.tv_usec >= MILLION) { ++fTotalInterPacketGaps.tv_sec; fTotalInterPacketGaps.tv_usec -= MILLION; } } fLastPacketReceptionTime = timeNow; // Compute the current 'jitter' using the received packet's RTP timestamp, // and the RTP timestamp that would correspond to the current time. // (Use the code from appendix A.8 in the RTP spec.) // Note, however, that we don't use this packet if its timestamp is // the same as that of the previous packet (this indicates a multi-packet // fragment), or if we've been explicitly told not to use this packet. if (useForJitterCalculation && rtpTimestamp != fPreviousPacketRTPTimestamp) { unsigned arrival = (timestampFrequency*timeNow.tv_sec); arrival += (unsigned) ((2.0*timestampFrequency*timeNow.tv_usec + 1000000.0)/2000000); // note: rounding int transit = arrival - rtpTimestamp; if (fLastTransit == (~0)) fLastTransit = transit; // hack for first time int d = transit - fLastTransit; fLastTransit = transit; if (d < 0) d = -d; fJitter += (1.0/16.0) * ((double)d - fJitter); } // Return the 'presentation time' that corresponds to "rtpTimestamp": if (fSyncTime.tv_sec == 0 && fSyncTime.tv_usec == 0) { // This is the first timestamp that we've seen, so use the current // 'wall clock' time as the synchronization time. (This will be // corrected later when we receive RTCP SRs.) fSyncTimestamp = rtpTimestamp; fSyncTime = timeNow; } int timestampDiff = rtpTimestamp - fSyncTimestamp; // Note: This works even if the timestamp wraps around // (as long as "int" is 32 bits) // Divide this by the timestamp frequency to get real time: double timeDiff = timestampDiff/(double)timestampFrequency; // Add this to the 'sync time' to get our result: unsigned const million = 1000000; unsigned seconds, uSeconds; if (timeDiff >= 0.0) { seconds = fSyncTime.tv_sec + (unsigned)(timeDiff); uSeconds = fSyncTime.tv_usec + (unsigned)((timeDiff - (unsigned)timeDiff)*million); if (uSeconds >= million) { uSeconds -= million; ++seconds; } } else { timeDiff = -timeDiff; seconds = fSyncTime.tv_sec - (unsigned)(timeDiff); uSeconds = fSyncTime.tv_usec - (unsigned)((timeDiff - (unsigned)timeDiff)*million); if ((int)uSeconds < 0) { uSeconds += million; --seconds; } } resultPresentationTime.tv_sec = seconds; resultPresentationTime.tv_usec = uSeconds; resultHasBeenSyncedUsingRTCP = fHasBeenSynchronized; // Save these as the new synchronization timestamp & time: fSyncTimestamp = rtpTimestamp; fSyncTime = resultPresentationTime; fPreviousPacketRTPTimestamp = rtpTimestamp; } void RTPReceptionStats::noteIncomingSR(u_int32_t ntpTimestampMSW, u_int32_t ntpTimestampLSW, u_int32_t rtpTimestamp) { fLastReceivedSR_NTPmsw = ntpTimestampMSW; fLastReceivedSR_NTPlsw = ntpTimestampLSW; gettimeofday(&fLastReceivedSR_time, NULL); // Use this SR to update time synchronization information: fSyncTimestamp = rtpTimestamp; fSyncTime.tv_sec = ntpTimestampMSW - 0x83AA7E80; // 1/1/1900 -> 1/1/1970 double microseconds = (ntpTimestampLSW*15625.0)/0x04000000; // 10^6/2^32 fSyncTime.tv_usec = (unsigned)(microseconds+0.5); fHasBeenSynchronized = True; } double RTPReceptionStats::totNumKBytesReceived() const { double const hiMultiplier = 0x20000000/125.0; // == (2^32)/(10^3) return fTotBytesReceived_hi*hiMultiplier + fTotBytesReceived_lo/1000.0; } unsigned RTPReceptionStats::jitter() const { return (unsigned)fJitter; } void RTPReceptionStats::reset() { fNumPacketsReceivedSinceLastReset = 0; fLastResetExtSeqNumReceived = fHighestExtSeqNumReceived; } Boolean seqNumLT(u_int16_t s1, u_int16_t s2) { // a 'less-than' on 16-bit sequence numbers int diff = s2-s1; if (diff > 0) { return (diff < 0x8000); } else if (diff < 0) { return (diff < -0x8000); } else { // diff == 0 return False; } }