/* * (C) Copyright 2013-2016 * Allwinner Technology Co., Ltd. j * */ #include "mmc_def.h" #include "mmc_bsp.h" #include "mmc.h" /* Set block count limit because of 16 bit register limit on some hardware*/ #ifndef CONFIG_SYS_MMC_MAX_BLK_COUNT #define CONFIG_SYS_MMC_MAX_BLK_COUNT 65535 #endif static struct mmc *mmc_devices[MAX_MMC_NUM]; int mmc_send_cmd(struct mmc *mmc, struct mmc_cmd *cmd, struct mmc_data *data) { return mmc->send_cmd(mmc, cmd, data); } int mmc_send_status(struct mmc *mmc, int timeout) { struct mmc_cmd cmd; int err; cmd.cmdidx = MMC_CMD_SEND_STATUS; cmd.resp_type = MMC_RSP_R1; cmd.cmdarg = mmc->rca << 16; cmd.flags = 0; do { err = mmc_send_cmd(mmc, &cmd, NULL); if (err) { mmcinfo("mmc %d Send status failed\n", mmc->control_num); return err; } else if (cmd.response[0] & MMC_STATUS_RDY_FOR_DATA) break; mdelay(1); if (cmd.response[0] & MMC_STATUS_MASK) { mmcinfo("mmc %d Status Error: 0x%08X\n", mmc->control_num, cmd.response[0]); return COMM_ERR; } } while (timeout--); if (!timeout) { mmcinfo("mmc %d Timeout waiting card ready\n", mmc->control_num); return TIMEOUT; } return 0; } int mmc_set_blocklen(struct mmc *mmc, int len) { struct mmc_cmd cmd; /*ddr mode not send blocklenth*/ if (mmc->io_mode) { return 0; } cmd.cmdidx = MMC_CMD_SET_BLOCKLEN; cmd.resp_type = MMC_RSP_R1; cmd.cmdarg = len; cmd.flags = 0; return mmc_send_cmd(mmc, &cmd, NULL); } struct mmc *find_mmc_device(int dev_num) { if (mmc_devices[dev_num] != NULL) return mmc_devices[dev_num]; mmcinfo("MMC Device %d not found\n", dev_num); return NULL; } #if 0 static unsigned long mmc_erase_t(struct mmc *mmc, unsigned long start, unsigned blkcnt) { struct mmc_cmd cmd; unsigned long end; int err, start_cmd, end_cmd; if (mmc->high_capacity) end = start + blkcnt - 1; else { end = (start + blkcnt - 1) * mmc->write_bl_len; start *= mmc->write_bl_len; } if (IS_SD(mmc)) { start_cmd = SD_CMD_ERASE_WR_BLK_START; end_cmd = SD_CMD_ERASE_WR_BLK_END; } else { start_cmd = MMC_CMD_ERASE_GROUP_START; end_cmd = MMC_CMD_ERASE_GROUP_END; } cmd.cmdidx = start_cmd; cmd.cmdarg = start; cmd.resp_type = MMC_RSP_R1; cmd.flags = 0; err = mmc_send_cmd(mmc, &cmd, NULL); if (err) goto err_out; cmd.cmdidx = end_cmd; cmd.cmdarg = end; err = mmc_send_cmd(mmc, &cmd, NULL); if (err) goto err_out; cmd.cmdidx = MMC_CMD_ERASE; cmd.cmdarg = SECURE_ERASE; cmd.resp_type = MMC_RSP_R1b; err = mmc_send_cmd(mmc, &cmd, NULL); if (err) goto err_out; return 0; err_out: mmcdbg("mmc erase failed\n"); return err; } #endif #if 0 int mmc_berase(int dev_num, unsigned long start, unsigned blkcnt) { int err = 0; struct mmc *mmc = find_mmc_device(dev_num); unsigned blk = 0, blk_r = 0; void *src = (void *)0x41000000; if (!mmc) { mmcinfo("Can not find mmc dev %d\n", dev_num); return -1; } memset(src, 0, 512*blkcnt); mmcinfo("mmc %d erase blk %d ~ %d\n", mmc->control_num, start, start + blkcnt - 1); err = mmc_bwrite(dev_num, start, blkcnt, src); mmcinfo("erase flag%d", err); if (!err) { mmcinfo("mmc %d erase failed\n", mmc->control_num); } return err; /* if ((start % mmc->erase_grp_size) || (blkcnt % mmc->erase_grp_size)) mmcdbg("\n\nCaution! Your devices Erase group is 0x%x\n" "The erase range would be change to 0x%x~0x%x\n\n", mmc->erase_grp_size, start & ~(mmc->erase_grp_size - 1), ((start + blkcnt + mmc->erase_grp_size) & ~(mmc->erase_grp_size - 1)) - 1); while (blk < blkcnt) { blk_r = ((blkcnt - blk) > mmc->erase_grp_size) ? mmc->erase_grp_size : (blkcnt - blk); err = mmc_erase_t(mmc, start + blk, blk_r); if (err) break; blk += blk_r; } return blk; */ } static unsigned long mmc_write_blocks(struct mmc *mmc, unsigned long start, unsigned blkcnt, const void *src) { struct mmc_cmd cmd; struct mmc_data data; int timeout = 1000; if ((start + blkcnt) > mmc->lba) { mmcinfo("mmc %d: block number 0x%lx exceeds max(0x%lx)\n", mmc->control_num, start + blkcnt, mmc->lba); return 0; } if (blkcnt > 1) cmd.cmdidx = MMC_CMD_WRITE_MULTIPLE_BLOCK; else cmd.cmdidx = MMC_CMD_WRITE_SINGLE_BLOCK; if (mmc->high_capacity) cmd.cmdarg = start; else cmd.cmdarg = start * mmc->write_bl_len; cmd.resp_type = MMC_RSP_R1; cmd.flags = 0; data.b.src = src; data.blocks = blkcnt; data.blocksize = mmc->write_bl_len; data.flags = MMC_DATA_WRITE; if (mmc_send_cmd(mmc, &cmd, &data)) { mmcinfo("mmc %d mmc write failed\n", mmc->control_num); return 0; } /* SPI multiblock writes terminate using a special * token, not a STOP_TRANSMISSION request. */ if (!mmc_host_is_spi(mmc) && blkcnt > 1) { cmd.cmdidx = MMC_CMD_STOP_TRANSMISSION; cmd.cmdarg = 0; cmd.resp_type = MMC_RSP_R1b; cmd.flags = 0; if (mmc_send_cmd(mmc, &cmd, NULL)) { mmcinfo("mmc %d fail to send stop cmd\n", mmc->control_num); return 0; } } /* Waiting for the ready status */ mmc_send_status(mmc, timeout); return blkcnt; } unsigned long mmc_bwrite(int dev_num, unsigned long start, unsigned blkcnt, const void *src) { unsigned cur, blocks_todo = blkcnt; struct mmc *mmc = find_mmc_device(dev_num); if (blkcnt == 0) { mmcinfo("mmc %d blkcnt should not be 0\n", dev_num); return 0; } if (!mmc) { mmcinfo("Can not found device %d\n", dev_num); return 0; } if (mmc_set_blocklen(mmc, mmc->write_bl_len)) { mmcinfo("mmc %d set block len failed\n", mmc->control_num); sunxi_mmc_exit(dev_num); if (sunxi_mmc_init(dev_num, 4) < 0) { mmcinfo("re init failed\n"); return 0; } return 0; } do { cur = (blocks_todo > mmc->b_max) ? mmc->b_max : blocks_todo; if (mmc_write_blocks(mmc, start, cur, src) != cur) { mmcinfo("mmc %d write block failed\n", mmc->control_num); return 0; } blocks_todo -= cur; start += cur; src += cur * mmc->write_bl_len; src = (char *)src + cur * mmc->write_bl_len; } while (blocks_todo > 0); return blkcnt; } #endif int mmc_read_blocks(struct mmc *mmc, void *dst, unsigned long start, unsigned blkcnt) { struct mmc_cmd cmd; struct mmc_data data; int timeout = 1000; if (blkcnt > 1) cmd.cmdidx = MMC_CMD_READ_MULTIPLE_BLOCK; else cmd.cmdidx = MMC_CMD_READ_SINGLE_BLOCK; if (mmc->high_capacity) cmd.cmdarg = start; else cmd.cmdarg = start * mmc->read_bl_len; cmd.resp_type = MMC_RSP_R1; cmd.flags = 0; data.b.dest = dst; data.blocks = blkcnt; data.blocksize = mmc->read_bl_len; data.flags = MMC_DATA_READ; if (mmc_send_cmd(mmc, &cmd, &data)) { mmcinfo("mmc %d read blcok failed\n", mmc->control_num); return 0; } if (blkcnt > 1) { cmd.cmdidx = MMC_CMD_STOP_TRANSMISSION; cmd.cmdarg = 0; cmd.resp_type = MMC_RSP_R1b; cmd.flags = 0; if (mmc_send_cmd(mmc, &cmd, NULL)) { mmcinfo("mmc %d fail to send stop cmd\n", mmc->control_num); return 0; } /* Waiting for the ready status */ mmc_send_status(mmc, timeout); } return blkcnt; } unsigned long mmc_bread(int dev_num, unsigned long start, unsigned blkcnt, void *dst) { unsigned cur, blocks_todo = blkcnt; struct mmc *mmc = find_mmc_device(dev_num); if (blkcnt == 0) { mmcinfo("mmc %d blkcnt should not be 0\n", mmc->control_num); return 0; } if (!mmc) { mmcinfo("Can not find mmc dev %d\n", dev_num); return 0; } if ((start + blkcnt) > mmc->lba) { mmcinfo("mmc %d: block number 0x%x exceeds max(0x%x)\n", mmc->control_num, (unsigned int)(start + blkcnt), (unsigned int)mmc->lba); return 0; } if (mmc_set_blocklen(mmc, mmc->read_bl_len)) { mmcinfo("mmc %d Set block len failed\n", mmc->control_num); return 0; } do { cur = (blocks_todo > mmc->b_max) ? mmc->b_max : blocks_todo; if (mmc_read_blocks(mmc, dst, start, cur) != cur) { mmcinfo("mmc %d block read failed\n", mmc->control_num); return 0; } blocks_todo -= cur; start += cur; /* dst += cur * mmc->read_bl_len; */ dst = (char *)dst + cur * mmc->read_bl_len; } while (blocks_todo > 0); return blkcnt; } int mmc_go_idle(struct mmc *mmc) { struct mmc_cmd cmd; int err; mdelay(1); cmd.cmdidx = MMC_CMD_GO_IDLE_STATE; cmd.cmdarg = 0; cmd.resp_type = MMC_RSP_NONE; cmd.flags = 0; err = mmc_send_cmd(mmc, &cmd, NULL); if (err) { mmcinfo("mmc %d go idle failed\n", mmc->control_num); return err; } mdelay(2); return 0; } int sd_send_op_cond(struct mmc *mmc) { int timeout = 1000; int err; struct mmc_cmd cmd; do { cmd.cmdidx = MMC_CMD_APP_CMD; cmd.resp_type = MMC_RSP_R1; cmd.cmdarg = 0; cmd.flags = 0; err = mmc_send_cmd(mmc, &cmd, NULL); if (err) { mmcinfo("mmc %d send app cmd failed\n", mmc->control_num); return err; } cmd.cmdidx = SD_CMD_APP_SEND_OP_COND; cmd.resp_type = MMC_RSP_R3; /* * Most cards do not answer if some reserved bits * in the ocr are set. However, Some controller * can set bit 7 (reserved for low voltages), but * how to manage low voltages SD card is not yet * specified. */ cmd.cmdarg = mmc_host_is_spi(mmc) ? 0 : (mmc->voltages & 0xff8000); if (mmc->version == SD_VERSION_2) cmd.cmdarg |= OCR_HCS; err = mmc_send_cmd(mmc, &cmd, NULL); if (err) { mmcinfo("mmc %d send cmd41 failed\n", mmc->control_num); return err; } mdelay(1); } while ((!(cmd.response[0] & OCR_BUSY)) && timeout--); if (timeout <= 0) { mmcinfo("mmc %d wait card init failed\n", mmc->control_num); return UNUSABLE_ERR; } if (mmc->version != SD_VERSION_2) mmc->version = SD_VERSION_1_0; if (mmc_host_is_spi(mmc)) { /* read OCR for spi */ cmd.cmdidx = MMC_CMD_SPI_READ_OCR; cmd.resp_type = MMC_RSP_R3; cmd.cmdarg = 0; cmd.flags = 0; err = mmc_send_cmd(mmc, &cmd, NULL); if (err) { mmcinfo("mmc %d spi read ocr failed\n", mmc->control_num); return err; } } mmc->ocr = cmd.response[0]; mmc->high_capacity = ((mmc->ocr & OCR_HCS) == OCR_HCS); mmc->rca = 0; return 0; } int mmc_send_op_cond(struct mmc *mmc) { int timeout = 10000; struct mmc_cmd cmd; int err; /* Some cards seem to need this */ mmc_go_idle(mmc); /* Asking to the card its capabilities */ cmd.cmdidx = MMC_CMD_SEND_OP_COND; cmd.resp_type = MMC_RSP_R3; cmd.cmdarg = 0; /*0x40ff8000;*/ /* foresee */ cmd.flags = 0; /* mmcinfo("mmc send op cond arg not zero !!!\n"); */ err = mmc_send_cmd(mmc, &cmd, NULL); if (err) { mmcinfo("mmc %d send op cond failed\n", mmc->control_num); return err; } mdelay(1); do { cmd.cmdidx = MMC_CMD_SEND_OP_COND; cmd.resp_type = MMC_RSP_R3; cmd.cmdarg = (mmc_host_is_spi(mmc) ? 0 : (mmc->voltages & (cmd.response[0] & OCR_VOLTAGE_MASK)) | (cmd.response[0] & OCR_ACCESS_MODE)); if (mmc->host_caps & MMC_MODE_HC) cmd.cmdarg |= OCR_HCS; cmd.flags = 0; err = mmc_send_cmd(mmc, &cmd, NULL); if (err) { mmcinfo("mmc %d send op cond failed\n", mmc->control_num); return err; } mdelay(1); } while (!(cmd.response[0] & OCR_BUSY) && timeout--); if (timeout <= 0) { mmcinfo("mmc %d wait for mmc init failed\n", mmc->control_num); return UNUSABLE_ERR; } if (mmc_host_is_spi(mmc)) { /* read OCR for spi */ cmd.cmdidx = MMC_CMD_SPI_READ_OCR; cmd.resp_type = MMC_RSP_R3; cmd.cmdarg = 0; cmd.flags = 0; err = mmc_send_cmd(mmc, &cmd, NULL); if (err) return err; } mmc->version = MMC_VERSION_UNKNOWN; mmc->ocr = cmd.response[0]; mmc->high_capacity = ((mmc->ocr & OCR_HCS) == OCR_HCS); mmc->rca = 1; return 0; } int mmc_send_ext_csd(struct mmc *mmc, char *ext_csd) { struct mmc_cmd cmd; struct mmc_data data; int err; /* Get the Card Status Register */ cmd.cmdidx = MMC_CMD_SEND_EXT_CSD; cmd.resp_type = MMC_RSP_R1; cmd.cmdarg = 0; cmd.flags = 0; data.b.dest = ext_csd; data.blocks = 1; data.blocksize = 512; data.flags = MMC_DATA_READ; err = mmc_send_cmd(mmc, &cmd, &data); if (err) mmcinfo("mmc %d send ext csd failed\n", mmc->control_num); return err; } int mmc_update_phase(struct mmc *mmc) { return mmc->update_phase(mmc); } int mmc_switch(struct mmc *mmc, u8 set, u8 index, u8 value) { struct mmc_cmd cmd; int timeout = 1000; int ret; cmd.cmdidx = MMC_CMD_SWITCH; cmd.resp_type = MMC_RSP_R1b; cmd.cmdarg = (MMC_SWITCH_MODE_WRITE_BYTE << 24) | (index << 16) | (value << 8); cmd.flags = 0; ret = mmc_send_cmd(mmc, &cmd, NULL); if (ret) { mmcinfo("mmc %d switch failed\n", mmc->control_num); } /* for re-update sample phase */ ret = mmc_update_phase(mmc); if (ret) { mmcinfo("mmc_switch: update clock failed after send cmd6\n"); return ret; } /* Waiting for the ready status */ mmc_send_status(mmc, timeout); return ret; } int mmc_change_freq(struct mmc *mmc) { char ext_csd[512]; char cardtype; int err; int retry = 5; mmc->card_caps = 0; if (mmc_host_is_spi(mmc)) return 0; /* Only version 4 supports high-speed */ if (mmc->version < MMC_VERSION_4) return 0; /* here we assume eMMC support 8 bit */ mmc->card_caps |= MMC_MODE_4BIT | MMC_MODE_8BIT; err = mmc_send_ext_csd(mmc, ext_csd); if (err) { mmcinfo("mmc %d get ext csd failed\n", mmc->control_num); return err; } cardtype = ext_csd[196] & 0xf; /* retry for Toshiba emmc, for the first time Toshiba emmc change to HS */ /* it will return response crc err, so retry */ do { err = mmc_switch(mmc, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_HS_TIMING, 1); if (!err) { break; } mmcinfo("retry mmc switch(cmd6)\n"); } while (retry--); if (err) { mmcinfo("mmc %d change to hs failed\n", mmc->control_num); return err; } /* Now check to see that it worked */ err = mmc_send_ext_csd(mmc, ext_csd); if (err) { mmcinfo("mmc %d send ext csd faild\n", mmc->control_num); return err; } /* No high-speed support */ if (!ext_csd[185]) return 0; /* High Speed is set, there are two types: 52MHz and 26MHz */ if (cardtype & MMC_HS_52MHZ) mmc->card_caps |= MMC_MODE_HS_52MHz | MMC_MODE_HS; else mmc->card_caps |= MMC_MODE_HS; if (cardtype & MMC_DDR_52MHZ) { mmc->card_caps |= MMC_MODE_DDR_52MHz; mmcdbg("get ddr OK!\n"); } else { mmcinfo("get ddr fail!\n"); } return 0; } int mmc_switch_part(int dev_num, unsigned int part_num) { struct mmc *mmc = find_mmc_device(dev_num); if (!mmc) return -1; return mmc_switch(mmc, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_PART_CONF, (mmc->part_config & ~PART_ACCESS_MASK) | (part_num & PART_ACCESS_MASK)); } int sd_switch(struct mmc *mmc, int mode, int group, u8 value, u8 *resp) { struct mmc_cmd cmd; struct mmc_data data; /* Switch the frequency */ cmd.cmdidx = SD_CMD_SWITCH_FUNC; cmd.resp_type = MMC_RSP_R1; cmd.cmdarg = (mode << 31) | 0xffffff; cmd.cmdarg &= ~(0xf << (group * 4)); cmd.cmdarg |= value << (group * 4); cmd.flags = 0; data.b.dest = (char *)resp; data.blocksize = 64; data.blocks = 1; data.flags = MMC_DATA_READ; return mmc_send_cmd(mmc, &cmd, &data); } int sd_change_freq(struct mmc *mmc) { int err; struct mmc_cmd cmd; u32 scr[2]; u32 switch_status[16]; struct mmc_data data; int timeout; mmc->card_caps = 0; if (mmc_host_is_spi(mmc)) return 0; /* Read the SCR to find out if this card supports higher speeds */ cmd.cmdidx = MMC_CMD_APP_CMD; cmd.resp_type = MMC_RSP_R1; cmd.cmdarg = mmc->rca << 16; cmd.flags = 0; err = mmc_send_cmd(mmc, &cmd, NULL); if (err) { mmcinfo("mmc %d Send app cmd failed\n", mmc->control_num); return err; } cmd.cmdidx = SD_CMD_APP_SEND_SCR; cmd.resp_type = MMC_RSP_R1; cmd.cmdarg = 0; cmd.flags = 0; timeout = 3; retry_scr: data.b.dest = (char *)&scr; data.blocksize = 8; data.blocks = 1; data.flags = MMC_DATA_READ; err = mmc_send_cmd(mmc, &cmd, &data); if (err) { if (timeout--) goto retry_scr; mmcinfo("mmc %d Send scr failed\n", mmc->control_num); return err; } mmc->scr[0] = __mmc_be32_to_cpu(scr[0]); mmc->scr[1] = __mmc_be32_to_cpu(scr[1]); switch ((mmc->scr[0] >> 24) & 0xf) { case 0: mmc->version = SD_VERSION_1_0; break; case 1: mmc->version = SD_VERSION_1_10; break; case 2: mmc->version = SD_VERSION_2; break; default: mmc->version = SD_VERSION_1_0; break; } if (mmc->scr[0] & SD_DATA_4BIT) mmc->card_caps |= MMC_MODE_4BIT; /* Version 1.0 doesn't support switching */ if (mmc->version == SD_VERSION_1_0) return 0; timeout = 4; while (timeout--) { err = sd_switch(mmc, SD_SWITCH_CHECK, 0, 1, (u8 *)&switch_status); if (err) { mmcinfo("mmc %d Check high speed status faild\n", mmc->control_num); return err; } /* The high-speed function is busy. Try again */ if (!(__be32_to_cpu(switch_status[7]) & SD_HIGHSPEED_BUSY)) break; } /* If high-speed isn't supported, we return */ if (!(__be32_to_cpu(switch_status[3]) & SD_HIGHSPEED_SUPPORTED)) return 0; err = sd_switch(mmc, SD_SWITCH_SWITCH, 0, 1, (u8 *)&switch_status); if (err) { mmcinfo("mmc %d switch to high speed failed\n", mmc->control_num); return err; } err = mmc_update_phase(mmc); if (err) { mmcinfo("update clock failed after send cmd6 to switch to sd high speed mode\n"); return err; } if ((__be32_to_cpu(switch_status[4]) & 0x0f000000) == 0x01000000) mmc->card_caps |= MMC_MODE_HS; return 0; } /* frequency bases */ /* divided by 10 to be nice to platforms without floating point */ static const int fbase[] = { 10000, 100000, 1000000, 10000000, }; /* Multiplier values for TRAN_SPEED. Multiplied by 10 to be nice * to platforms without floating point. */ static const int multipliers[] = { 0, /* reserved */ 10, 12, 13, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 70, 80, }; void mmc_set_ios(struct mmc *mmc) { mmc->set_ios(mmc); } void mmc_set_clock(struct mmc *mmc, uint clock) { if (clock > mmc->f_max) clock = mmc->f_max; if (clock < mmc->f_min) clock = mmc->f_min; mmc->clock = clock; mmc_set_ios(mmc); } void mmc_set_bus_mode(struct mmc *mmc, u32 ddr) { mmc->io_mode = ddr; mmc_set_ios(mmc); } void mmc_set_bus_width(struct mmc *mmc, u32 width) { mmc->bus_width = width; mmc_set_ios(mmc); } int mmc_startup(struct mmc *mmc) { int err; u32 mult, freq; u64 cmult, csize, capacity; struct mmc_cmd cmd; char ext_csd[512]; int timeout = 1000; /* Put the Card in Identify Mode */ cmd.cmdidx = mmc_host_is_spi(mmc) ? MMC_CMD_SEND_CID : MMC_CMD_ALL_SEND_CID; /* cmd not supported in spi */ cmd.resp_type = MMC_RSP_R2; cmd.cmdarg = 0; cmd.flags = 0; err = mmc_send_cmd(mmc, &cmd, NULL); if (err) { mmcinfo("mmc %d Put the Card in Identify Mode failed\n", mmc->control_num); return err; } memcpy(mmc->cid, cmd.response, 16); /* * For MMC cards, set the Relative Address. * For SD cards, get the Relatvie Address. * This also puts the cards into Standby State */ if (!mmc_host_is_spi(mmc)) { /* cmd not supported in spi */ cmd.cmdidx = SD_CMD_SEND_RELATIVE_ADDR; cmd.cmdarg = mmc->rca << 16; cmd.resp_type = MMC_RSP_R6; cmd.flags = 0; err = mmc_send_cmd(mmc, &cmd, NULL); if (err) { mmcinfo("mmc %d send rca failed\n", mmc->control_num); return err; } if (IS_SD(mmc)) mmc->rca = (cmd.response[0] >> 16) & 0xffff; } /* Get the Card-Specific Data */ cmd.cmdidx = MMC_CMD_SEND_CSD; cmd.resp_type = MMC_RSP_R2; cmd.cmdarg = mmc->rca << 16; cmd.flags = 0; err = mmc_send_cmd(mmc, &cmd, NULL); /* Waiting for the ready status */ mmc_send_status(mmc, timeout); if (err) { mmcinfo("mmc %d get csd failed\n", mmc->control_num); return err; } mmc->csd[0] = cmd.response[0]; mmc->csd[1] = cmd.response[1]; mmc->csd[2] = cmd.response[2]; mmc->csd[3] = cmd.response[3]; if (mmc->version == MMC_VERSION_UNKNOWN) { int version = (cmd.response[0] >> 26) & 0xf; switch (version) { case 0: mmc->version = MMC_VERSION_1_2; break; case 1: mmc->version = MMC_VERSION_1_4; break; case 2: mmc->version = MMC_VERSION_2_2; break; case 3: mmc->version = MMC_VERSION_3; break; case 4: mmc->version = MMC_VERSION_4; break; default: mmc->version = MMC_VERSION_1_2; break; } } /* divide frequency by 10, since the mults are 10x bigger */ freq = fbase[(cmd.response[0] & 0x7)]; mult = multipliers[((cmd.response[0] >> 3) & 0xf)]; mmc->tran_speed = freq * mult; mmc->read_bl_len = 1 << ((cmd.response[1] >> 16) & 0xf); if (IS_SD(mmc)) mmc->write_bl_len = mmc->read_bl_len; else mmc->write_bl_len = 1 << ((cmd.response[3] >> 22) & 0xf); if (mmc->high_capacity) { csize = (mmc->csd[1] & 0x3f) << 16 | (mmc->csd[2] & 0xffff0000) >> 16; cmult = 8; } else { csize = (mmc->csd[1] & 0x3ff) << 2 | (mmc->csd[2] & 0xc0000000) >> 30; cmult = (mmc->csd[2] & 0x00038000) >> 15; } mmc->capacity = (csize + 1) << (cmult + 2); mmc->capacity *= mmc->read_bl_len; if (mmc->read_bl_len > 512) mmc->read_bl_len = 512; if (mmc->write_bl_len > 512) mmc->write_bl_len = 512; #if defined(CONFIG_ARCH_SUN8IW5P1) || defined(CONFIG_ARCH_SUN8IW6P1) || \ defined(CONFIG_ARCH_SUN8IW8P1) || (defined CONFIG_ARCH_SUN8IW7P1) || \ (defined CONFIG_ARCH_SUN8IW9P1) if (IS_SD(mmc)) { mmc_set_clock(mmc, 25000000); } #endif /* Select the card, and put it into Transfer Mode */ if (!mmc_host_is_spi(mmc)) { /* cmd not supported in spi */ cmd.cmdidx = MMC_CMD_SELECT_CARD; cmd.resp_type = MMC_RSP_R1b; cmd.cmdarg = mmc->rca << 16; cmd.flags = 0; err = mmc_send_cmd(mmc, &cmd, NULL); if (err) { mmcinfo("Select the card failed\n"); return err; } } /* * For SD, its erase group is always one sector */ mmc->erase_grp_size = 1; mmc->part_config = MMCPART_NOAVAILABLE; if (!IS_SD(mmc) && (mmc->version >= MMC_VERSION_4)) { /* check ext_csd version and capacity */ err = mmc_send_ext_csd(mmc, ext_csd); if (!err) { /* update mmc version */ switch (ext_csd[192]) { case 0: mmc->version = MMC_VERSION_4; break; case 1: mmc->version = MMC_VERSION_4_1; break; case 2: mmc->version = MMC_VERSION_4_2; break; case 3: mmc->version = MMC_VERSION_4_3; break; case 5: mmc->version = MMC_VERSION_4_41; break; case 6: mmc->version = MMC_VERSION_4_5; break; case 7: mmc->version = MMC_VERSION_5_0; break; } } if (!err & (ext_csd[192] >= 2)) { /* * According to the JEDEC Standard, the value of * ext_csd's capacity is valid if the value is more * than 2GB */ capacity = ext_csd[212] << 0 | ext_csd[213] << 8 | ext_csd[214] << 16 | ext_csd[215] << 24; capacity *= 512; if ((capacity >> 20) > 2 * 1024) mmc->capacity = capacity; } /* * Check whether GROUP_DEF is set, if yes, read out * group size from ext_csd directly, or calculate * the group size from the csd value. */ if (ext_csd[175]) mmc->erase_grp_size = ext_csd[224] * 512 * 1024; else { int erase_gsz, erase_gmul; erase_gsz = (mmc->csd[2] & 0x00007c00) >> 10; erase_gmul = (mmc->csd[2] & 0x000003e0) >> 5; mmc->erase_grp_size = (erase_gsz + 1) * (erase_gmul + 1); } /* store the partition info of emmc */ if (ext_csd[160] & PART_SUPPORT) mmc->part_config = ext_csd[179]; } mmc_set_clock(mmc, 25000000); if (IS_SD(mmc)) err = sd_change_freq(mmc); else err = mmc_change_freq(mmc); if (err) { mmcinfo("mmc %d Change speed mode failed\n", mmc->control_num); return err; } /* for re-update sample phase */ err = mmc_update_phase(mmc); if (err) { mmcinfo("update clock failed\n"); return err; } /* Restrict card's capabilities by what the host can do */ mmc->card_caps &= mmc->host_caps; if (IS_SD(mmc)) { if (mmc->card_caps & MMC_MODE_4BIT) { cmd.cmdidx = MMC_CMD_APP_CMD; cmd.resp_type = MMC_RSP_R1; cmd.cmdarg = mmc->rca << 16; cmd.flags = 0; err = mmc_send_cmd(mmc, &cmd, NULL); if (err) { mmcinfo("mmc %d send app cmd failed\n", mmc->control_num); return err; } cmd.cmdidx = SD_CMD_APP_SET_BUS_WIDTH; cmd.resp_type = MMC_RSP_R1; cmd.cmdarg = 2; cmd.flags = 0; err = mmc_send_cmd(mmc, &cmd, NULL); if (err) { mmcinfo("mmc %d sd set bus width failed\n", mmc->control_num); return err; } mmc_set_bus_width(mmc, 4); } if (mmc->card_caps & MMC_MODE_HS) mmc_set_clock(mmc, 50000000); else mmc_set_clock(mmc, 25000000); } else { if (mmc->card_caps & MMC_MODE_8BIT) { if ((mmc->card_caps & MMC_MODE_DDR_52MHz)) { mmcinfo("8bit ddr!!! \n"); /* Set the card to use 8 bit ddr*/ err = mmc_switch(mmc, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BUS_WIDTH, EXT_CSD_BUS_DDR_8); if (err) { mmcinfo("mmc switch bus width failed\n"); return err; } mmc_set_bus_mode(mmc, 1); mmc_set_bus_width(mmc, 8); } else { /* Set the card to use 8 bit*/ err = mmc_switch(mmc, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BUS_WIDTH, EXT_CSD_BUS_WIDTH_8); if (err) { mmcinfo("mmc switch bus width8 failed\n"); return err; } mmc_set_bus_width(mmc, 8); } } else if (mmc->card_caps & MMC_MODE_4BIT) { if ((mmc->card_caps & MMC_MODE_DDR_52MHz)) { mmcinfo("4bit bus ddr!!! \n"); /* Set the card to use 4 bit ddr*/ err = mmc_switch(mmc, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BUS_WIDTH, EXT_CSD_BUS_DDR_4); if (err) { mmcinfo("mmc switch bus width failed\n"); return err; } mmc_set_bus_mode(mmc, 1); mmc_set_bus_width(mmc, 4); } else { /* Set the card to use 4 bit*/ err = mmc_switch(mmc, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BUS_WIDTH, EXT_CSD_BUS_WIDTH_4); if (err) { mmcinfo("mmc switch bus width failed\n"); return err; } mmc_set_bus_width(mmc, 4); } } if (mmc->card_caps & MMC_MODE_DDR_52MHz) { mmc_set_clock(mmc, 52000000); } else if (mmc->card_caps & MMC_MODE_HS) { if (mmc->card_caps & MMC_MODE_HS_52MHz) mmc_set_clock(mmc, 52000000); else mmc_set_clock(mmc, 26000000); } else mmc_set_clock(mmc, 20000000); } /* fill in device description */ mmc->blksz = mmc->read_bl_len; mmc->lba = mmc->capacity / mmc->read_bl_len; if (!IS_SD(mmc)) { switch (mmc->version) { case MMC_VERSION_1_2: mmcinfo("MMC ver 1.2\n"); break; case MMC_VERSION_1_4: mmcinfo("MMC ver 1.4\n"); break; case MMC_VERSION_2_2: mmcinfo("MMC ver 2.2\n"); break; case MMC_VERSION_3: mmcinfo("MMC ver 3.0\n"); break; case MMC_VERSION_4: mmcinfo("MMC ver 4.0\n"); break; case MMC_VERSION_4_1: mmcinfo("MMC ver 4.1\n"); break; case MMC_VERSION_4_2: mmcinfo("MMC ver 4.2\n"); break; case MMC_VERSION_4_3: mmcinfo("MMC ver 4.3\n"); break; case MMC_VERSION_4_41: mmcinfo("MMC ver 4.41\n"); break; case MMC_VERSION_4_5: mmcinfo("MMC ver 4.5\n"); break; case MMC_VERSION_5_0: mmcinfo("MMC ver 5.0\n"); break; default: mmcinfo("Unknow MMC ver\n"); break; } } mmcinfo("SD/MMC Card: %dbit, capacity: %dMB\n", mmc->card_caps & MMC_MODE_8BIT ? 8 : (mmc->card_caps & MMC_MODE_4BIT ? 4 : 1), mmc->lba >> 11); mmcinfo("vendor: Man %x Snr %x\n", (mmc->cid[0] >> 8) & 0xffffff, (mmc->cid[2] << 8) | (mmc->cid[3] >> 24)); mmcinfo("product: %c%c%c%c%c\n", mmc->cid[0] & 0xff, (mmc->cid[1] >> 24), (mmc->cid[1] >> 16) & 0xff, (mmc->cid[1] >> 8) & 0xff, mmc->cid[1] & 0xff); mmcinfo("revision: %d.%d\n", mmc->cid[2] >> 28, (mmc->cid[2] >> 24) & 0xf); return 0; } int mmc_send_if_cond(struct mmc *mmc) { struct mmc_cmd cmd; int err; cmd.cmdidx = SD_CMD_SEND_IF_COND; /* We set the bit if the host supports voltages between 2.7 and 3.6 V */ cmd.cmdarg = ((mmc->voltages & 0xff8000) != 0) << 8 | 0xaa; cmd.resp_type = MMC_RSP_R7; cmd.flags = 0; err = mmc_send_cmd(mmc, &cmd, NULL); if (err) { mmcinfo("mmc %d send if cond failed\n", mmc->control_num); return err; } if ((cmd.response[0] & 0xff) != 0xaa) return UNUSABLE_ERR; else mmc->version = SD_VERSION_2; return 0; } int mmc_init(struct mmc *mmc) { int err; if (mmc->has_init) { mmcinfo("mmc %d Has init\n", mmc->control_num); return 0; } err = mmc->init(mmc); if (err) { mmcinfo("mmc %d host init failed\n", mmc->control_num); return err; } mmc_set_bus_width(mmc, 1); mmc_set_clock(mmc, 1); /* Reset the Card */ err = mmc_go_idle(mmc); if (err) { mmcinfo("mmc %d reset card failed\n", mmc->control_num); return err; } /* The internal partition reset to user partition(0) at every CMD0*/ mmc->part_num = 0; mmcinfo("***Try SD card %d***\n", mmc->control_num); /* Test for SD version 2 */ err = mmc_send_if_cond(mmc); /* Now try to get the SD card's operating condition */ err = sd_send_op_cond(mmc); /* If the command timed out, we check for an MMC card */ if (err) { mmcinfo("***Try MMC card %d***\n", mmc->control_num); err = mmc_send_op_cond(mmc); if (err) { mmcinfo("mmc %d Card did not respond to voltage select!\n", mmc->control_num); mmcinfo("***SD/MMC %d init error!!!***\n", mmc->control_num); return UNUSABLE_ERR; } } err = mmc_startup(mmc); if (err) { mmcinfo("***SD/MMC %d init error!!!***\n", mmc->control_num); mmc->has_init = 0; } else { mmc->has_init = 1; mmcinfo("***SD/MMC %d init OK!!!***\n", mmc->control_num); } return err; } int mmc_register(int dev_num, struct mmc *mmc) { mmc_devices[dev_num] = mmc; if (!mmc->b_max) mmc->b_max = CONFIG_SYS_MMC_MAX_BLK_COUNT; return mmc_init(mmc); } int mmc_unregister(int dev_num) { mmc_devices[dev_num] = NULL; mmcdbg("mmc%d unregister\n", dev_num); return 0; }