// SPDX-License-Identifier: BSD-2-Clause /* * Copyright (C) 2017 The Android Open Source Project */ #include #include #include #include #include #include #include #include #include int sunxi_flash_try_partition(struct blk_desc *desc, const char *str, disk_partition_t *info); /** * Compute the CRC-32 of the bootloader control struct. * * Only the bytes up to the crc32_le field are considered for the CRC-32 * calculation. * * @param[in] abc bootloader control block * * @return crc32 sum */ static uint32_t ab_control_compute_crc(struct bootloader_control *abc) { return crc32(0, (void *)abc, offsetof(typeof(*abc), crc32_le)); } /** * Initialize bootloader_control to the default value. * * It allows us to boot all slots in order from the first one. This value * should be used when the bootloader message is corrupted, but not when * a valid message indicates that all slots are unbootable. * * @param[in] abc bootloader control block * * @return 0 on success and a negative on error */ static int ab_control_default(struct bootloader_control *abc) { int i; const struct slot_metadata metadata = {.priority = 15, .tries_remaining = 7, .successful_boot = 0, .verity_corrupted = 0, .reserved = 0 }; if (!abc) return -EFAULT; memcpy(abc->slot_suffix, "a\0\0\0", 4); abc->magic = BOOT_CTRL_MAGIC; abc->version = BOOT_CTRL_VERSION; abc->nb_slot = NUM_SLOTS; memset(abc->reserved0, 0, sizeof(abc->reserved0)); for (i = 0; i < abc->nb_slot; ++i) abc->slot_info[i] = metadata; memset(abc->reserved1, 0, sizeof(abc->reserved1)); abc->crc32_le = ab_control_compute_crc(abc); return 0; } /** * Load the boot_control struct from disk into newly allocated memory. * * This function allocates and returns an integer number of disk blocks, * based on the block size of the passed device to help performing a * read-modify-write operation on the boot_control struct. * The boot_control struct offset (2 KiB) must be a multiple of the device * block size, for simplicity. * * @param[in] dev_desc Device where to read the boot_control struct from * @param[in] part_info Partition in 'dev_desc' where to read from, normally * the "misc" partition should be used * @param[out] pointer to pointer to bootloader_control data * @return 0 on success and a negative on error */ static int ab_control_create_from_disk(struct blk_desc *dev_desc, const disk_partition_t *part_info, struct bootloader_control **abc) { ulong abc_offset, abc_blocks, ret; abc_offset = offsetof(struct bootloader_message_ab, slot_suffix); if (abc_offset % part_info->blksz) { pr_err("ANDROID: Boot control block not block aligned.\n"); return -EINVAL; } abc_offset /= part_info->blksz; abc_blocks = DIV_ROUND_UP(sizeof(struct bootloader_control), part_info->blksz); if (abc_offset + abc_blocks > part_info->size) { pr_err("ANDROID: boot control partition too small. Need at"); pr_err(" least %lu blocks but have %lu blocks.\n", abc_offset + abc_blocks, part_info->size); return -EINVAL; } *abc = malloc_cache_aligned(abc_blocks * part_info->blksz); if (!*abc) return -ENOMEM; ret = blk_dread(dev_desc, part_info->start + abc_offset, abc_blocks, *abc); if (IS_ERR_VALUE(ret)) { pr_err("ANDROID: Could not read from boot ctrl partition\n"); free(*abc); return -EIO; } pr_msg("ANDROID: Loaded ABC, %lu blocks\n", abc_blocks); return 0; } /** * Store the loaded boot_control block. * * Store back to the same location it was read from with * ab_control_create_from_misc(). * * @param[in] dev_desc Device where we should write the boot_control struct * @param[in] part_info Partition on the 'dev_desc' where to write * @param[in] abc Pointer to the boot control struct and the extra bytes after * it up to the nearest block boundary * @return 0 on success and a negative on error */ static int ab_control_store(struct blk_desc *dev_desc, const disk_partition_t *part_info, struct bootloader_control *abc) { ulong abc_offset, abc_blocks, ret; abc_offset = offsetof(struct bootloader_message_ab, slot_suffix) / part_info->blksz; abc_blocks = DIV_ROUND_UP(sizeof(struct bootloader_control), part_info->blksz); ret = blk_dwrite(dev_desc, part_info->start + abc_offset, abc_blocks, abc); if (IS_ERR_VALUE(ret)) { pr_err("ANDROID: Could not write back the misc partition\n"); return -EIO; } return 0; } /** * Compare two slots. * * The function determines slot which is should we boot from among the two. * * @param[in] a The first bootable slot metadata * @param[in] b The second bootable slot metadata * @return Negative if the slot "a" is better, positive of the slot "b" is * better or 0 if they are equally good. */ static int ab_compare_slots(const struct slot_metadata *a, const struct slot_metadata *b) { /* Higher priority is better */ if (a->priority != b->priority) return b->priority - a->priority; /* Higher successful_boot value is better, in case of same priority */ if (a->successful_boot != b->successful_boot) return b->successful_boot - a->successful_boot; /* Higher tries_remaining is better to ensure round-robin */ if (a->tries_remaining != b->tries_remaining) return b->tries_remaining - a->tries_remaining; return 0; } int ab_select_slot(struct blk_desc *dev_desc, disk_partition_t *part_info) { struct bootloader_control *abc = NULL; u32 crc32_le = 0; int slot, i, ret; bool store_needed = false; char slot_suffix[4]; ret = ab_control_create_from_disk(dev_desc, part_info, &abc); if (ret < 0) { /* * This condition represents an actual problem with the code or * the board setup, like an invalid partition information. * Signal a repair mode and do not try to boot from either slot. */ return ret; } #ifdef CONFIG_SUNXI_SECURE_STORAGE char boot_slot = 0; uint8_t slot_b = 0; uint8_t kActivePriority = 15; uint8_t kActiveTries = 6; ret = sunxi_secure_storage_write_or_read("set-active-boot-slot", &boot_slot, 1, 1); if ((ret >= 0) && (boot_slot > 0)) { slot_b = boot_slot - 0x31; for (i = 0; i < abc->nb_slot; ++i) { if (i != slot_b) { if (abc->slot_info[i].priority >= kActivePriority) { abc->slot_info[i].priority = kActivePriority - 1; } } } abc->slot_info[slot_b].priority = kActivePriority; abc->slot_info[slot_b].tries_remaining = kActiveTries; abc->crc32_le = ab_control_compute_crc(abc); boot_slot = 0; sunxi_secure_storage_write_or_read("set-active-boot-slot", &boot_slot, 1, 0); } #endif crc32_le = ab_control_compute_crc(abc); if (abc->crc32_le != crc32_le) { pr_err("ANDROID: Invalid CRC-32 (expected %.8x, found %.8x),", crc32_le, abc->crc32_le); pr_err("re-initializing A/B metadata.\n"); ret = ab_control_default(abc); if (ret < 0) { free(abc); return -ENODATA; } store_needed = true; } if (abc->magic != BOOT_CTRL_MAGIC) { pr_err("ANDROID: Unknown A/B metadata: %.8x\n", abc->magic); free(abc); return -ENODATA; } if (abc->version > BOOT_CTRL_VERSION) { pr_err("ANDROID: Unsupported A/B metadata version: %.8x\n", abc->version); free(abc); return -ENODATA; } /* * At this point a valid boot control metadata is stored in abc, * followed by other reserved data in the same block. We select a with * the higher priority slot that * - is not marked as corrupted and * - either has tries_remaining > 0 or successful_boot is true. * If the selected slot has a false successful_boot, we also decrement * the tries_remaining until it eventually becomes unbootable because * tries_remaining reaches 0. This mechanism produces a bootloader * induced rollback, typically right after a failed update. */ /* Safety check: limit the number of slots. */ if (abc->nb_slot > ARRAY_SIZE(abc->slot_info)) { abc->nb_slot = ARRAY_SIZE(abc->slot_info); store_needed = true; } slot = -1; for (i = 0; i < abc->nb_slot; ++i) { if (abc->slot_info[i].verity_corrupted || !abc->slot_info[i].tries_remaining) { pr_msg("ANDROID: unbootable slot %d tries: %d, ", i, abc->slot_info[i].tries_remaining); pr_msg("corrupt: %d\n", abc->slot_info[i].verity_corrupted); continue; } pr_msg("ANDROID: bootable slot %d pri: %d, tries: %d, ", i, abc->slot_info[i].priority, abc->slot_info[i].tries_remaining); pr_msg("corrupt: %d, successful: %d\n", abc->slot_info[i].verity_corrupted, abc->slot_info[i].successful_boot); if (slot < 0 || ab_compare_slots(&abc->slot_info[i], &abc->slot_info[slot]) < 0) { slot = i; } } if (slot >= 0 && !abc->slot_info[slot].successful_boot) { pr_err("ANDROID: Attempting slot %c, tries remaining %d\n", BOOT_SLOT_NAME(slot), abc->slot_info[slot].tries_remaining); abc->slot_info[slot].tries_remaining--; store_needed = true; } if (slot >= 0) { /* * Legacy user-space requires this field to be set in the BCB. * Newer releases load this slot suffix from the command line * or the device tree. */ memset(slot_suffix, 0, sizeof(slot_suffix)); slot_suffix[0] = BOOT_SLOT_NAME(slot); if (memcmp(abc->slot_suffix, slot_suffix, sizeof(slot_suffix))) { memcpy(abc->slot_suffix, slot_suffix, sizeof(slot_suffix)); store_needed = true; } } if (store_needed) { abc->crc32_le = ab_control_compute_crc(abc); ab_control_store(dev_desc, part_info, abc); } free(abc); if (slot < 0) return -EINVAL; return slot; } int ab_select_slot_from_partname(char *part_name) { static struct blk_desc *dev_desc; static disk_partition_t part_info; static int ret = -37; int i; if (ret == -37) { if ((dev_desc == NULL) || (strncmp(part_name, (char *)part_info.name, strlen(part_name)))) { dev_desc = blk_get_devnum_by_typename("sunxi_flash", 0); if (dev_desc == NULL) { debug("%s: get desc fail\n", __func__); return CMD_RET_FAILURE; } for (i = 1;; i++) { ret = part_get_info(dev_desc, i, &part_info); debug("%s: try part %d, ret = %d\n", __func__, i, ret); if (ret < 0) return ret; if (!strncmp((const char *)part_info.name, part_name, sizeof(part_info.name))) break; } } ret = ab_select_slot(dev_desc, &part_info); } return ret; } static int do_enable_sunxi_ab_test(cmd_tbl_t *cmdtp, int flag, int argc, char *const argv[]) { struct bootloader_control *abc = NULL; int i, ret; char part_name[] = "misc"; static struct blk_desc *dev_desc; static disk_partition_t part_info; const struct slot_metadata metadata = { .priority = 15, .tries_remaining = 7, .successful_boot = 0, .verity_corrupted = 0, .reserved = 0 }; dev_desc = blk_get_devnum_by_typename("sunxi_flash", 0); if (dev_desc == NULL) { debug("%s: get desc fail\n", __func__); return CMD_RET_FAILURE; } for (i = 1;; i++) { ret = part_get_info(dev_desc, i, &part_info); debug("%s: try part %d, ret = %d\n", __func__, i, ret); if (ret < 0) return ret; if (!strncmp((const char *)part_info.name, part_name, sizeof(part_info.name))) break; } ret = ab_control_create_from_disk(dev_desc, &part_info, &abc); if (ret < 0) { /* * This condition represents an actual problem with the code or * the board setup, like an invalid partition information. * Signal a repair mode and do not try to boot from either slot. */ return ret; } pr_err("creating default ab control info\n"); ret = ab_control_default(abc); if (ret < 0) { free(abc); return -ENODATA; } //0 and 1 created from default share same const struct //give slot 1 a different value abc->slot_info[1] = metadata; abc->slot_info[1].priority = 12; abc->crc32_le = ab_control_compute_crc(abc); ab_control_store(dev_desc, &part_info, abc); pr_err("reset bootcmd to \"reset\" for reboot test\n"); run_command("env set bootcmd reset", 0); run_command("env save", 0); tick_printf("prepare ab test done, reset to start the test\n"); return 0; } U_BOOT_CMD( sunxi_ab_test, 4, 0, do_enable_sunxi_ab_test, "enable test for uboot ab select feature", "" );