sdk-hwV1.3/lichee/linux-4.9/drivers/mtd/spi-nor/spi-nor.c

3539 lines
94 KiB
C

/*
* Based on m25p80.c, by Mike Lavender (mike@steroidmicros.com), with
* influence from lart.c (Abraham Van Der Merwe) and mtd_dataflash.c
*
* Copyright (C) 2005, Intec Automation Inc.
* Copyright (C) 2014, Freescale Semiconductor, Inc.
*
* This code is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/err.h>
#include <linux/errno.h>
#include <linux/module.h>
#include <linux/device.h>
#include <linux/mutex.h>
#include <linux/math64.h>
#include <linux/sizes.h>
#include <linux/mtd/mtd.h>
#include <linux/of_platform.h>
#include <linux/spi/flash.h>
#include <linux/mtd/spi-nor.h>
#include <linux/debugfs.h>
#include <linux/uaccess.h>
#define SUNXI_NOR_MODULE_VERSION "1.0.5"
/* Define max times to check status register before we give up. */
/*
* For everything but full-chip erase; probably could be much smaller, but kept
* around for safety for now
*/
#define DEFAULT_READY_WAIT_JIFFIES (40UL * HZ)
/*
* For full-chip erase, calibrated to a 2MB flash (M25P16); should be scaled up
* for larger flash
*/
#define CHIP_ERASE_2MB_READY_WAIT_JIFFIES (40UL * HZ)
#define SPI_NOR_MAX_ID_LEN 6
#define SPI_NOR_MAX_ADDR_WIDTH 4
#define SPI_NOR_MAX_UID_LEN 16
#define UID_READ_DUMMY_BITS 8
#define UID_ADDR_WIDTH 3
static struct spinordbg_data spinordbg_priv;
static struct spi_nor *spinordbg;
struct flash_info {
char *name;
/*
* This array stores the ID bytes.
* The first three bytes are the JEDIC ID.
* JEDEC ID zero means "no ID" (mostly older chips).
*/
u8 id[SPI_NOR_MAX_ID_LEN];
u8 id_len;
/* The size listed here is what works with SPINOR_OP_SE, which isn't
* necessarily called a "sector" by the vendor.
*/
unsigned sector_size;
u16 n_sectors;
u16 n_banks;
u16 page_size;
u16 addr_width;
u32 flags;
#define SECT_4K BIT(0) /* SPINOR_OP_BE_4K works uniformly */
#define SPI_NOR_NO_ERASE BIT(1) /* No erase command needed */
#define SST_WRITE BIT(2) /* use SST byte programming */
#define SPI_NOR_NO_FR BIT(3) /* Can't do fastread */
#define SECT_4K_PMC BIT(4) /* SPINOR_OP_BE_4K_PMC works uniformly */
#define SPI_NOR_DUAL_READ BIT(5) /* Flash supports Dual Read */
#define SPI_NOR_QUAD_READ BIT(6) /* Flash supports Quad Read */
#define USE_FSR BIT(7) /* use flag status register */
#define SPI_NOR_HAS_LOCK BIT(8) /* Flash supports lock/unlock via SR */
#define SPI_NOR_HAS_TB BIT(9) /*
* Flash SR has Top/Bottom (TB) protect
* bit. Must be used with
* SPI_NOR_HAS_LOCK.
*/
#define SPI_NOR_4B_OPCODES BIT(10) /*
* Use dedicated 4byte address op codes
* to support memory size above 256Mib.
*/
#define SPI_NOR_ERASE_32K BIT(11) /* Flash supports erase 32KB
* sector_size = 32KB
*/
#define SPI_NOR_INDIVIDUAL_LOCK BIT(16) /* individual block/sector lock mode */
#define SPI_NOR_HAS_LOCK_HANDLE BIT(17) /* OP/ERASE for lock operation */
};
#define JEDEC_MFR(info) ((info)->id[0])
#define JEDEC_ID(info) (((info)->id[1]) << 8 | ((info)->id[2]))
#define BP_SZ_4K (4 * 1024)
#define BP_SZ_32K (32 * 1024)
#define BP_SZ_64K (64 * 1024)
#define BP_SZ_128K (128 * 1024)
#define BP_SZ_256K (256 * 1024)
#define BP_SZ_512K (512 * 1024)
#define BP_SZ_1M (1 * 1024 * 1024)
#define BP_SZ_2M (2 * 1024 * 1024)
#define BP_SZ_4M (4 * 1024 * 1024)
#define BP_SZ_6M (6 * 1024 * 1024)
#define BP_SZ_7M (7 * 1024 * 1024)
#define BP_SZ_7680K (7680 * 1024)
#define BP_SZ_7936K (7936 * 1024)
#define BP_SZ_8064K (8064 * 1024)
#define BP_SZ_8128K (8128 * 1024)
#define BP_SZ_8M (8 * 1024 * 1024)
#define BP_SZ_12M (12 * 1024 * 1024)
#define BP_SZ_14M (14 * 1024 * 1024)
#define BP_SZ_15M (15 * 1024 * 1024)
#define BP_SZ_15872K (15872 * 1024)
#define BP_SZ_16128K (16128 * 1024)
#define BP_SZ_16M (16 * 1024 * 1024)
#define BP_SZ_32M (32 * 1024 * 1024)
#define BP_SZ_64M (64 * 1024 * 1024)
#define NOR_LOCK_BLOCK_SIZE (64 * 1024)
#define NOR_LOCK_SECTOR_SIZE (4 * 1024)
/* TB bit is OTP (one times program) */
struct nor_protection mxic_protection[] = {
{ .boundary = 0, .bp = 0, .flag = 0 },
{ .boundary = BP_SZ_64K, .bp = BIT(0), .flag = SET_TB },
{ .boundary = BP_SZ_128K, .bp = BIT(1), .flag = SET_TB },
{ .boundary = BP_SZ_256K, .bp = BIT(1) | BIT(0), .flag = SET_TB },
{ .boundary = BP_SZ_512K, .bp = BIT(2), .flag = SET_TB },
{ .boundary = BP_SZ_1M, .bp = BIT(2) | BIT(0), .flag = SET_TB },
{ .boundary = BP_SZ_2M, .bp = BIT(2) | BIT(1), .flag = SET_TB },
{ .boundary = BP_SZ_4M, .bp = BIT(2) | BIT(1) | BIT(0), .flag = SET_TB },
{ .boundary = BP_SZ_8M, .bp = BIT(3), .flag = SET_TB },
{ .boundary = BP_SZ_16M, .bp = BIT(3) | BIT(0), .flag = SET_TB },
{ .boundary = BP_SZ_32M, .bp = BIT(3) | BIT(1), .flag = SET_TB },
{ .boundary = BP_SZ_64M, .bp = BIT(3) | BIT(1) | BIT(0), .flag = SET_TB },
};
struct nor_protection gd_protection[] = {
{ .boundary = 0, .bp = 0, .flag = 0 },
{ .boundary = BP_SZ_256K, .bp = BIT(3) | BIT(0), .flag = 0 },
{ .boundary = BP_SZ_512K, .bp = BIT(3) | BIT(1), .flag = 0 },
{ .boundary = BP_SZ_1M, .bp = BIT(3) | BIT(1) | BIT(0), .flag = 0 },
{ .boundary = BP_SZ_2M, .bp = BIT(3) | BIT(2), .flag = 0 },
{ .boundary = BP_SZ_4M, .bp = BIT(3) | BIT(2) | BIT(0), .flag = 0 },
{ .boundary = BP_SZ_8M, .bp = BIT(3) | BIT(2) | BIT(1), .flag = 0 },
{ .boundary = BP_SZ_12M, .bp = BIT(2) | BIT(0), .flag = SET_CMP },
{ .boundary = BP_SZ_14M, .bp = BIT(2), .flag = SET_CMP },
{ .boundary = BP_SZ_15M, .bp = BIT(1) | BIT(0), .flag = SET_CMP },
{ .boundary = BP_SZ_15872K, .bp = BIT(1), .flag = SET_CMP },
{ .boundary = BP_SZ_16128K, .bp = BIT(0), .flag = SET_CMP },
{ .boundary = BP_SZ_16M, .bp = BIT(2) | BIT(1) | BIT(0), .flag = 0},
};
struct nor_protection esmt_protection[] = {
{ .boundary = 0, .bp = 0, .flag = 0 },
{ .boundary = BP_SZ_256K, .bp = BIT(3) | BIT(0), .flag = 0 },
{ .boundary = BP_SZ_512K, .bp = BIT(3) | BIT(1), .flag = 0 },
{ .boundary = BP_SZ_1M, .bp = BIT(3) | BIT(1) | BIT(0), .flag = 0 },
{ .boundary = BP_SZ_2M, .bp = BIT(3) | BIT(2), .flag = 0 },
{ .boundary = BP_SZ_4M, .bp = BIT(3) | BIT(2) | BIT(0), .flag = 0 },
{ .boundary = BP_SZ_8M, .bp = BIT(3) | BIT(2) | BIT(1), .flag = 0 },
#if 0 /* TB in otp zone */
{ .boundary = BP_SZ_12M, .bp = BIT(2) | BIT(0), .flag = SET_TB },
{ .boundary = BP_SZ_14M, .bp = BIT(2), .flag = SET_TB },
{ .boundary = BP_SZ_15M, .bp = BIT(1) | BIT(0), .flag = SET_TB },
{ .boundary = BP_SZ_15872K, .bp = BIT(1), .flag = SET_TB },
{ .boundary = BP_SZ_16128K, .bp = BIT(0), .flag = SET_TB },
#endif
{ .boundary = BP_SZ_16M, .bp = BIT(3) | BIT(2) | BIT(1) | BIT(0), .flag = 0 },
};
struct nor_protection esmt_protection_8M[] = {
{ .boundary = 0, .bp = 0, .flag = 0 },
{ .boundary = BP_SZ_64K, .bp = BIT(0), .flag = SET_TB },
{ .boundary = BP_SZ_128K, .bp = BIT(1), .flag = SET_TB },
{ .boundary = BP_SZ_256K, .bp = BIT(1) | BIT(0), .flag = SET_TB },
{ .boundary = BP_SZ_512K, .bp = BIT(2), .flag = SET_TB },
{ .boundary = BP_SZ_1M, .bp = BIT(2) | BIT(0), .flag = SET_TB },
{ .boundary = BP_SZ_2M, .bp = BIT(2) | BIT(1), .flag = SET_TB },
{ .boundary = BP_SZ_4M, .bp = BIT(2) | BIT(1) | BIT(0), .flag = SET_TB },
{ .boundary = BP_SZ_6M, .bp = BIT(3) | BIT(2) | BIT(1), .flag = SET_TB },
{ .boundary = BP_SZ_7M, .bp = BIT(3) | BIT(0), .flag = SET_TB },
{ .boundary = BP_SZ_7680K, .bp = BIT(3) | BIT(1), .flag = SET_TB },
{ .boundary = BP_SZ_7936K, .bp = BIT(3) | BIT(1) | BIT(0), .flag = SET_TB },
{ .boundary = BP_SZ_8064K, .bp = BIT(3) | BIT(2), .flag = SET_TB },
{ .boundary = BP_SZ_8128K, .bp = BIT(3) | BIT(2) | BIT(1), .flag = SET_TB },
{ .boundary = BP_SZ_8M, .bp = BIT(3) | BIT(2) | BIT(1) | BIT(0), .flag = SET_TB },
};
static const struct flash_info *spi_nor_match_id(const char *name);
#ifndef CONFIG_SPIF_SUNXI
struct spi_nor *get_spinor(void)
{
return spinordbg;
}
#else
struct spi_nor *get_spinor_static(void)
{
return spinordbg;
}
#endif
/*
* Read the status register, returning its value in the location
* Return the status register value.
* Returns negative if error occurred.
*/
static int read_sr(struct spi_nor *nor)
{
int ret;
u8 val;
ret = nor->read_reg(nor, SPINOR_OP_RDSR, &val, 1);
if (ret < 0) {
pr_err("error %d reading SR\n", (int) ret);
return ret;
}
return val;
}
/*
* Read the status register2, returning its value in the
* location. Return the configuration register value.
* Returns negative if error occurred.
*/
static int read_sr2(struct spi_nor *nor)
{
int ret;
u8 val;
ret = nor->read_reg(nor, SPINOR_OP_RDSR2, &val, 1);
if (ret < 0) {
dev_err(nor->dev, "error %d reading CR\n", ret);
return ret;
}
return val;
}
/*
* Read the status register3, returning its value in the
* location. Return the configuration register value.
* Returns negative if error occurred.
*/
static int read_sr3(struct spi_nor *nor)
{
int ret;
u8 val;
ret = nor->read_reg(nor, SPINOR_OP_RDSR3, &val, 1);
if (ret < 0) {
dev_err(nor->dev, "error %d reading CR\n", ret);
return ret;
}
return val;
}
/*
* Read the flag status register, returning its value in the location
* Return the status register value.
* Returns negative if error occurred.
*/
static int read_fsr(struct spi_nor *nor)
{
int ret;
u8 val;
ret = nor->read_reg(nor, SPINOR_OP_RDFSR, &val, 1);
if (ret < 0) {
pr_err("error %d reading FSR\n", ret);
return ret;
}
return val;
}
/*
* Read configuration register, returning its value in the
* location. Return the configuration register value.
* Returns negative if error occured.
*/
static int read_cr(struct spi_nor *nor)
{
int ret;
u8 val;
ret = nor->read_reg(nor, SPINOR_OP_RDCR, &val, 1);
if (ret < 0) {
dev_err(nor->dev, "error %d reading CR\n", ret);
return ret;
}
return val;
}
/*
* Read MXIC security register, returning its value in
* the location. Return the configuration register value.
* Returns negative if error occurred.
*/
static inline int read_mxic_sr(struct spi_nor *nor)
{
int ret = 0;
u8 val = 0;
ret = nor->read_reg(nor, SPINOR_OP_RDSCUR, &val, 1);
if (ret < 0) {
pr_debug("error %d reading MXIC scur\n", (int)ret);
return ret;
}
return val;
}
/*
* Dummy Cycle calculation for different type of read.
* It can be used to support more commands with
* different dummy cycle requirements.
*/
static inline int spi_nor_read_dummy_cycles(struct spi_nor *nor)
{
switch (nor->flash_read) {
case SPI_NOR_FAST:
case SPI_NOR_DUAL:
case SPI_NOR_QUAD:
case SPI_NOR_OCTAL:
return 8;
case SPI_NOR_NORMAL:
return 0;
}
return 0;
}
/*
* Set write enable latch with Write Enable command.
* Returns negative if error occurred.
*/
static inline int write_enable(struct spi_nor *nor)
{
return nor->write_reg(nor, SPINOR_OP_WREN, NULL, 0);
}
/*
* Send write disble instruction to the chip.
*/
static inline int write_disable(struct spi_nor *nor)
{
return nor->write_reg(nor, SPINOR_OP_WRDI, NULL, 0);
}
static inline struct spi_nor *mtd_to_spi_nor(struct mtd_info *mtd)
{
return mtd->priv;
}
/* Enable/disable 4-byte addressing mode. */
static inline int set_4byte(struct spi_nor *nor, const struct flash_info *info,
int enable)
{
int status;
bool need_wren = false;
int ids = 0;
u8 cmd;
switch (JEDEC_MFR(info)) {
case SNOR_MFR_MICRON:
/* Some Micron need WREN command; all will accept it */
need_wren = true;
case SNOR_MFR_MACRONIX:
case SNOR_MFR_WINBOND:
ids = nor->n_banks;
do {
if (nor->flash_select_bank)
nor->flash_select_bank(nor, 0, ids);
if (need_wren)
write_enable(nor);
cmd = enable ? SPINOR_OP_EN4B : SPINOR_OP_EX4B;
status = nor->write_reg(nor, cmd, NULL, 0);
if (need_wren)
write_disable(nor);
} while (ids--);
return status;
default:
/* Spansion style */
nor->cmd_buf[0] = enable << 7;
return nor->write_reg(nor, SPINOR_OP_BRWR, nor->cmd_buf, 1);
}
}
static inline int spi_nor_sr_ready(struct spi_nor *nor)
{
int sr = read_sr(nor);
if (sr < 0)
return sr;
else
return !(sr & SR_WIP);
}
static inline int spi_nor_fsr_ready(struct spi_nor *nor)
{
int fsr = read_fsr(nor);
if (fsr < 0)
return fsr;
else
return fsr & FSR_READY;
}
static int spi_nor_ready(struct spi_nor *nor)
{
int sr, fsr;
sr = spi_nor_sr_ready(nor);
if (sr < 0)
return sr;
fsr = nor->flags & SNOR_F_USE_FSR ? spi_nor_fsr_ready(nor) : 1;
if (fsr < 0)
return fsr;
return sr && fsr;
}
/*
* Service routine to read status register until ready, or timeout occurs.
* Returns non-zero if error.
*/
static int spi_nor_wait_till_ready_with_timeout(struct spi_nor *nor,
unsigned long timeout_jiffies)
{
unsigned long deadline;
int timeout = 0, ret;
deadline = jiffies + timeout_jiffies;
while (!timeout) {
if (time_after_eq(jiffies, deadline))
timeout = 1;
ret = spi_nor_ready(nor);
if (ret < 0)
return ret;
if (ret)
return 0;
cond_resched();
}
dev_err(nor->dev, "flash operation timed out\n");
return -ETIMEDOUT;
}
static int spi_nor_wait_till_ready(struct spi_nor *nor)
{
return spi_nor_wait_till_ready_with_timeout(nor,
DEFAULT_READY_WAIT_JIFFIES);
}
/*
* Write status register 1 byte
* Returns negative if error occurred.
*/
static inline int write_sr(struct spi_nor *nor, u8 val)
{
nor->cmd_buf[0] = val;
return nor->write_reg(nor, SPINOR_OP_WRSR, nor->cmd_buf, 1);
}
/*
* Write status register2 1 byte
* Returns negative if error occurred.
*/
static int write_sr2(struct spi_nor *nor, u8 val)
{
int ret;
nor->cmd_buf[0] = val;
write_enable(nor);
ret = nor->write_reg(nor, SPINOR_OP_WRSR2, nor->cmd_buf, 1);
if (ret < 0) {
dev_dbg(nor->dev,
"error while writing configuration register\n");
return -EINVAL;
}
ret = spi_nor_wait_till_ready(nor);
if (ret) {
dev_dbg(nor->dev,
"timeout while writing configuration register\n");
return ret;
}
return 0;
}
/*
* Write status register3 1 byte
* Returns negative if error occurred.
*/
static int write_sr3(struct spi_nor *nor, u8 val)
{
int ret;
nor->cmd_buf[0] = val;
write_enable(nor);
ret = nor->write_reg(nor, SPINOR_OP_WRSR3, nor->cmd_buf, 1);
if (ret < 0) {
dev_dbg(nor->dev,
"error while writing configuration register\n");
return -EINVAL;
}
ret = spi_nor_wait_till_ready(nor);
if (ret) {
dev_dbg(nor->dev,
"timeout while writing configuration register\n");
return ret;
}
return 0;
}
/*
* Write control register 1 byte
* Returns negative if error occurred.
*/
static int write_cr(struct spi_nor *nor, u8 val)
{
nor->cmd_buf[0] = val;
return nor->write_reg(nor, SPINOR_OP_WRSR2, nor->cmd_buf, 1);
}
/*
* Write status Register and configuration register with 2 bytes
* The first byte will be written to the status register, while the
* second byte will be written to the configuration register.
* Return negative if error occured.
*/
static int write_sr_cr(struct spi_nor *nor, u8 *sr_cr)
{
int ret;
write_enable(nor);
ret = nor->write_reg(nor, SPINOR_OP_WRSR, sr_cr, 2);
if (ret < 0) {
dev_dbg(nor->dev,
"error while writing configuration register\n");
return -EINVAL;
}
ret = spi_nor_wait_till_ready(nor);
if (ret) {
dev_dbg(nor->dev,
"timeout while writing configuration register\n");
return ret;
}
return 0;
}
static int enter_otp(struct spi_nor *nor)
{
return nor->write_reg(nor, SPINOR_OP_ENTER_OTP, NULL, 0);
}
static int exit_otp(struct spi_nor *nor)
{
return nor->write_reg(nor, SPINOR_OP_EXIT_OTP, NULL, 0);
}
static int write_vsr_enable(struct spi_nor *nor)
{
return nor->write_reg(nor, SPINOR_OP_WREN_VSR, NULL, 0);
}
static int write_otp_sr(struct spi_nor *nor, u8 val)
{
int ret;
ret = enter_otp(nor);
if (ret)
return ret;
ret = write_vsr_enable(nor);
if (ret)
goto exit_otp;
ret = write_sr(nor, val);
if (ret)
goto exit_otp;
ret = spi_nor_wait_till_ready(nor);
if (ret)
goto exit_otp;
exit_otp:
exit_otp(nor);
return ret;
}
static int read_otp_sr(struct spi_nor *nor)
{
int ret;
int val;
ret = enter_otp(nor);
if (ret)
return ret;
ret = write_vsr_enable(nor);
if (ret)
return ret;
val = read_sr(nor);
if (val < 0) {
exit_otp(nor);
return val;
}
ret = exit_otp(nor);
if (ret)
return ret;
return val | 0xff;
}
static int gigadevice_config_cmp(struct spi_nor *nor, int cmp)
{
int ret = 0, sr2_old, sr2_new;
sr2_old = read_sr2(nor);
if (sr2_old < 0)
return sr2_old;
if (cmp)
sr2_new = sr2_old | SR2_CMP_GD;
else
sr2_new = sr2_old & ~SR2_CMP_GD;
if (sr2_old != sr2_new) {
write_enable(nor);
ret = write_sr2(nor, sr2_new & 0xff);
spi_nor_wait_till_ready(nor);
}
dev_dbg(nor->dev, "sr2:0x%x --> 0x%x\n", sr2_old, sr2_new);
return ret;
}
/*
* Erase the whole flash memory
*
* Returns 0 if successful, non-zero otherwise.
*/
static int erase_chip(struct spi_nor *nor)
{
dev_dbg(nor->dev, " %lldKiB\n", (long long)(nor->mtd.size >> 10));
return nor->write_reg(nor, SPINOR_OP_CHIP_ERASE, NULL, 0);
}
static int spi_nor_lock_and_prep(struct spi_nor *nor, enum spi_nor_ops ops)
{
int ret = 0;
mutex_lock(&nor->lock);
if (nor->prepare) {
ret = nor->prepare(nor, ops);
if (ret) {
dev_err(nor->dev, "failed in the preparation.\n");
mutex_unlock(&nor->lock);
return ret;
}
}
return ret;
}
static void spi_nor_unlock_and_unprep(struct spi_nor *nor, enum spi_nor_ops ops)
{
if (nor->unprepare)
nor->unprepare(nor, ops);
mutex_unlock(&nor->lock);
}
/*
* Initiate the erasure of a single sector
*/
static int spi_nor_erase_sector(struct spi_nor *nor, u32 addr)
{
u8 buf[SPI_NOR_MAX_ADDR_WIDTH];
int i;
if (nor->erase)
return nor->erase(nor, addr);
/*
* Default implementation, if driver doesn't have a specialized HW
* control
*/
for (i = nor->addr_width - 1; i >= 0; i--) {
buf[i] = addr & 0xff;
addr >>= 8;
}
return nor->write_reg(nor, nor->erase_opcode, buf, nor->addr_width);
}
/*
* Erase an address range on the nor chip. The address range may extend
* one or more erase sectors. Return an error is there is a problem erasing.
*/
static int spi_nor_erase(struct mtd_info *mtd, struct erase_info *instr)
{
struct spi_nor *nor = mtd_to_spi_nor(mtd);
u32 addr, len;
uint32_t rem;
int ids = 0;
int ret;
dev_dbg(nor->dev, "at 0x%llx, len %lld\n", (long long)instr->addr,
(long long)instr->len);
div_u64_rem(instr->len, mtd->erasesize, &rem);
if (rem)
return -EINVAL;
addr = instr->addr;
len = instr->len;
ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_ERASE);
if (ret)
return ret;
/* whole-chip erase? */
if (len == mtd->size) {
unsigned long timeout;
if (nor->n_banks && nor->flash_select_bank)
ids = nor->n_banks;
else
ids = 0;
do {
if (nor->flash_select_bank)
nor->flash_select_bank(nor, 0, ids);
write_enable(nor);
if (erase_chip(nor)) {
ret = -EIO;
goto erase_err;
}
/*
* Scale the timeout linearly with the size of the flash, with
* a minimum calibrated to an old 2MB flash. We could try to
* pull these from CFI/SFDP, but these values should be good
* enough for now.
*/
timeout = max(CHIP_ERASE_2MB_READY_WAIT_JIFFIES,
CHIP_ERASE_2MB_READY_WAIT_JIFFIES *
(unsigned long)(mtd->size / SZ_2M));
ret = spi_nor_wait_till_ready_with_timeout(nor, timeout);
if (ret)
goto erase_err;
} while (ids--);
/* REVISIT in some cases we could speed up erasing large regions
* by using SPINOR_OP_SE instead of SPINOR_OP_BE_4K. We may have set up
* to use "small sector erase", but that's not always optimal.
*/
/* "sector"-at-a-time erase */
} else {
u32 bank_size = 0;
if (nor->n_banks && nor->flash_select_bank)
bank_size = (u32)div_u64(mtd->size, nor->n_banks);
while (len) {
if (nor->n_banks && nor->flash_select_bank)
nor->flash_select_bank(nor, addr, addr / bank_size);
write_enable(nor);
ret = spi_nor_erase_sector(nor, addr);
if (ret)
goto erase_err;
addr += mtd->erasesize;
len -= mtd->erasesize;
ret = spi_nor_wait_till_ready(nor);
if (ret)
goto erase_err;
}
}
write_disable(nor);
erase_err:
spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_ERASE);
instr->state = ret ? MTD_ERASE_FAILED : MTD_ERASE_DONE;
mtd_erase_callback(instr);
return ret;
}
/*
* Erase an address range on the nor chip. The address range may extend
* one or more erase sectors. Return an error is there is a problem erasing.
* erase_size keep 4KB.
*/
static int spi_nor_erase_4k(struct mtd_info *mtd, struct erase_info *instr)
{
struct spi_nor *nor = mtd_to_spi_nor(mtd);
u32 addr, len;
uint32_t rem;
int ids = 0;
int ret;
uint32_t temp_erasesize;
u8 temp_eraseopcode;
dev_dbg(nor->dev, "at 0x%llx, len %lld\n", (long long)instr->addr,
(long long)instr->len);
div_u64_rem(instr->len, mtd->erasesize, &rem);
if (rem)
return -EINVAL;
ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_ERASE);
if (ret)
return ret;
/*
* Save erasesize and erase_opcode. Change erasesize to 4096.
* Set 4byte opcodes when possible.
*/
temp_erasesize = mtd->erasesize;
temp_eraseopcode = nor->erase_opcode;
nor->erase_opcode = SPINOR_OP_BE_4K;
mtd->erasesize = 4096;
addr = instr->addr;
len = instr->len;
/* whole-chip erase? */
if (len == mtd->size) {
unsigned long timeout;
if (nor->n_banks && nor->flash_select_bank)
ids = nor->n_banks;
else
ids = 0;
do {
if (nor->flash_select_bank)
nor->flash_select_bank(nor, 0, ids);
write_enable(nor);
if (erase_chip(nor)) {
ret = -EIO;
goto erase_err;
}
/*
* Scale the timeout linearly with the size of the flash, with
* a minimum calibrated to an old 2MB flash. We could try to
* pull these from CFI/SFDP, but these values should be good
* enough for now.
*/
timeout = max(CHIP_ERASE_2MB_READY_WAIT_JIFFIES,
CHIP_ERASE_2MB_READY_WAIT_JIFFIES *
(unsigned long)(mtd->size / SZ_2M));
ret = spi_nor_wait_till_ready_with_timeout(nor, timeout);
if (ret)
goto erase_err;
} while (ids--);
/* REVISIT in some cases we could speed up erasing large regions
* by using SPINOR_OP_SE instead of SPINOR_OP_BE_4K. We may have set up
* to use "small sector erase", but that's not always optimal.
*/
/* "sector"-at-a-time erase */
} else {
u32 bank_size = 0;
if (nor->n_banks && nor->flash_select_bank)
bank_size = (u32)div_u64(mtd->size, nor->n_banks);
while (len) {
if (nor->n_banks && nor->flash_select_bank)
nor->flash_select_bank(nor, addr, addr / bank_size);
write_enable(nor);
ret = spi_nor_erase_sector(nor, addr);
if (ret)
goto erase_err;
addr += mtd->erasesize;
len -= mtd->erasesize;
ret = spi_nor_wait_till_ready(nor);
if (ret)
goto erase_err;
}
}
write_disable(nor);
erase_err:
instr->state = ret ? MTD_ERASE_FAILED : MTD_ERASE_DONE;
mtd_erase_callback(instr);
mtd->erasesize = temp_erasesize;
nor->erase_opcode = temp_eraseopcode;
spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_ERASE);
return ret;
}
static int spi_nor_has_lock_erase(struct mtd_info *mtd,
struct erase_info *instr)
{
struct spi_nor *nor = mtd_to_spi_nor(mtd);
int ret;
if (mtd->_unlock(mtd, instr->addr, instr->len))
dev_err(nor->dev, "erase unlock error\n");
ret = spi_nor_erase(mtd, instr);
mtd->_lock(mtd, 0, mtd->size);
return ret;
}
/* Write status register and ensure bits in mask match written values */
static int write_sr_and_check(struct spi_nor *nor, u8 status_new, u8 mask)
{
int ret;
write_enable(nor);
ret = write_sr(nor, status_new);
if (ret)
return ret;
ret = spi_nor_wait_till_ready(nor);
if (ret)
return ret;
ret = read_sr(nor);
if (ret < 0)
return ret;
return ((ret & mask) != (status_new & mask)) ? -EIO : 0;
}
static void stm_get_locked_range(struct spi_nor *nor, u8 sr, loff_t *ofs,
uint64_t *len)
{
struct mtd_info *mtd = &nor->mtd;
u8 mask = SR_BP2 | SR_BP1 | SR_BP0;
int shift = ffs(mask) - 1;
int pow;
if (!(sr & mask)) {
/* No protection */
*ofs = 0;
*len = 0;
} else {
pow = ((sr & mask) ^ mask) >> shift;
*len = mtd->size >> pow;
if (nor->flags & SNOR_F_HAS_SR_TB && sr & SR_TB)
*ofs = 0;
else
*ofs = mtd->size - *len;
}
}
/*
* Return 1 if the entire region is locked (if @locked is true) or unlocked (if
* @locked is false); 0 otherwise
*/
static int stm_check_lock_status_sr(struct spi_nor *nor, loff_t ofs, uint64_t len,
u8 sr, bool locked)
{
loff_t lock_offs;
uint64_t lock_len;
if (!len)
return 1;
stm_get_locked_range(nor, sr, &lock_offs, &lock_len);
if (locked)
/* Requested range is a sub-range of locked range */
return (ofs + len <= lock_offs + lock_len) && (ofs >= lock_offs);
else
/* Requested range does not overlap with locked range */
return (ofs >= lock_offs + lock_len) || (ofs + len <= lock_offs);
}
static int stm_is_locked_sr(struct spi_nor *nor, loff_t ofs, uint64_t len,
u8 sr)
{
return stm_check_lock_status_sr(nor, ofs, len, sr, true);
}
static int stm_is_unlocked_sr(struct spi_nor *nor, loff_t ofs, uint64_t len,
u8 sr)
{
return stm_check_lock_status_sr(nor, ofs, len, sr, false);
}
/*
* Lock a region of the flash. Compatible with ST Micro and similar flash.
* Supports the block protection bits BP{0,1,2} in the status register
* (SR). Does not support these features found in newer SR bitfields:
* - SEC: sector/block protect - only handle SEC=0 (block protect)
* - CMP: complement protect - only support CMP=0 (range is not complemented)
*
* Support for the following is provided conditionally for some flash:
* - TB: top/bottom protect
*
* Sample table portion for 8MB flash (Winbond w25q64fw):
*
* SEC | TB | BP2 | BP1 | BP0 | Prot Length | Protected Portion
* --------------------------------------------------------------------------
* X | X | 0 | 0 | 0 | NONE | NONE
* 0 | 0 | 0 | 0 | 1 | 128 KB | Upper 1/64
* 0 | 0 | 0 | 1 | 0 | 256 KB | Upper 1/32
* 0 | 0 | 0 | 1 | 1 | 512 KB | Upper 1/16
* 0 | 0 | 1 | 0 | 0 | 1 MB | Upper 1/8
* 0 | 0 | 1 | 0 | 1 | 2 MB | Upper 1/4
* 0 | 0 | 1 | 1 | 0 | 4 MB | Upper 1/2
* X | X | 1 | 1 | 1 | 8 MB | ALL
* ------|-------|-------|-------|-------|---------------|-------------------
* 0 | 1 | 0 | 0 | 1 | 128 KB | Lower 1/64
* 0 | 1 | 0 | 1 | 0 | 256 KB | Lower 1/32
* 0 | 1 | 0 | 1 | 1 | 512 KB | Lower 1/16
* 0 | 1 | 1 | 0 | 0 | 1 MB | Lower 1/8
* 0 | 1 | 1 | 0 | 1 | 2 MB | Lower 1/4
* 0 | 1 | 1 | 1 | 0 | 4 MB | Lower 1/2
*
* Returns negative on errors, 0 on success.
*/
static int stm_lock(struct spi_nor *nor, loff_t ofs, uint64_t len)
{
struct mtd_info *mtd = &nor->mtd;
int status_old, status_new;
u8 mask = SR_BP2 | SR_BP1 | SR_BP0;
u8 shift = ffs(mask) - 1, pow, val;
loff_t lock_len;
bool can_be_top = true, can_be_bottom = nor->flags & SNOR_F_HAS_SR_TB;
bool use_top;
int ret;
status_old = read_sr(nor);
if (status_old < 0)
return status_old;
/* If nothing in our range is unlocked, we don't need to do anything */
if (stm_is_locked_sr(nor, ofs, len, status_old))
return 0;
/* If anything below us is unlocked, we can't use 'bottom' protection */
if (!stm_is_locked_sr(nor, 0, ofs, status_old))
can_be_bottom = false;
/* If anything above us is unlocked, we can't use 'top' protection */
if (!stm_is_locked_sr(nor, ofs + len, mtd->size - (ofs + len),
status_old))
can_be_top = false;
if (!can_be_bottom && !can_be_top)
return -EINVAL;
/* Prefer top, if both are valid */
use_top = can_be_top;
/* lock_len: length of region that should end up locked */
if (use_top)
lock_len = mtd->size - ofs;
else
lock_len = ofs + len;
/*
* Need smallest pow such that:
*
* 1 / (2^pow) <= (len / size)
*
* so (assuming power-of-2 size) we do:
*
* pow = ceil(log2(size / len)) = log2(size) - floor(log2(len))
*/
pow = ilog2(mtd->size) - ilog2(lock_len);
val = mask - (pow << shift);
if (val & ~mask)
return -EINVAL;
/* Don't "lock" with no region! */
if (!(val & mask))
return -EINVAL;
status_new = (status_old & ~mask & ~SR_TB) | val;
/* Disallow further writes if WP pin is asserted */
status_new |= SR_SRWD;
if (!use_top)
status_new |= SR_TB;
/* Don't bother if they're the same */
if (status_new == status_old)
return 0;
/* Only modify protection if it will not unlock other areas */
if ((status_new & mask) < (status_old & mask))
return -EINVAL;
write_enable(nor);
ret = write_sr(nor, status_new);
if (ret)
return ret;
return spi_nor_wait_till_ready(nor);
}
/*
* Unlock a region of the flash. See stm_lock() for more info
*
* Returns negative on errors, 0 on success.
*/
static int stm_unlock(struct spi_nor *nor, loff_t ofs, uint64_t len)
{
struct mtd_info *mtd = &nor->mtd;
int status_old, status_new;
u8 mask = SR_BP2 | SR_BP1 | SR_BP0;
u8 shift = ffs(mask) - 1, pow, val;
loff_t lock_len;
bool can_be_top = true, can_be_bottom = nor->flags & SNOR_F_HAS_SR_TB;
bool use_top;
int ret;
status_old = read_sr(nor);
if (status_old < 0)
return status_old;
/* If nothing in our range is locked, we don't need to do anything */
if (stm_is_unlocked_sr(nor, ofs, len, status_old))
return 0;
/* If anything below us is locked, we can't use 'top' protection */
if (!stm_is_unlocked_sr(nor, 0, ofs, status_old))
can_be_top = false;
/* If anything above us is locked, we can't use 'bottom' protection */
if (!stm_is_unlocked_sr(nor, ofs + len, mtd->size - (ofs + len),
status_old))
can_be_bottom = false;
if (!can_be_bottom && !can_be_top)
return -EINVAL;
/* Prefer top, if both are valid */
use_top = can_be_top;
/* lock_len: length of region that should remain locked */
if (use_top)
lock_len = mtd->size - (ofs + len);
else
lock_len = ofs;
/*
* Need largest pow such that:
*
* 1 / (2^pow) >= (len / size)
*
* so (assuming power-of-2 size) we do:
*
* pow = floor(log2(size / len)) = log2(size) - ceil(log2(len))
*/
pow = ilog2(mtd->size) - order_base_2(lock_len);
if (lock_len == 0) {
val = 0; /* fully unlocked */
} else {
val = mask - (pow << shift);
/* Some power-of-two sizes are not supported */
if (val & ~mask)
return -EINVAL;
}
status_new = (status_old & ~mask & ~SR_TB) | val;
/* Don't protect status register if we're fully unlocked */
if (lock_len == 0)
status_new &= ~SR_SRWD;
if (!use_top)
status_new |= SR_TB;
/* Don't bother if they're the same */
if (status_new == status_old)
return 0;
/* Only modify protection if it will not lock other areas */
if ((status_new & mask) > (status_old & mask))
return -EINVAL;
write_enable(nor);
ret = write_sr(nor, status_new);
if (ret)
return ret;
return spi_nor_wait_till_ready(nor);
}
/*
* Check if a region of the flash is (completely) locked. See stm_lock() for
* more info.
*
* Returns 1 if entire region is locked, 0 if any portion is unlocked, and
* negative on errors.
*/
static int stm_is_locked(struct spi_nor *nor, loff_t ofs, uint64_t len)
{
int status;
status = read_sr(nor);
if (status < 0)
return status;
return stm_is_locked_sr(nor, ofs, len, status);
}
static void sunxi_get_locked_range(struct spi_nor *nor, u8 sr, u8 cr,
loff_t *ofs, uint64_t *len)
{
u8 mask, shift;
int bp_check, i, flash_protection_size = 0;
struct nor_protection *flash_protection = NULL;
if (JEDEC_MFR(nor->info) == SNOR_MFR_MACRONIX) {
mask = SR_BP3 | SR_BP2 | SR_BP1 | SR_BP0;
flash_protection = mxic_protection;
flash_protection_size = ARRAY_SIZE(mxic_protection);
} else if (JEDEC_MFR(nor->info) == SNOR_MFR_EON) { /* esmt */
mask = SR_BP3 | SR_BP2 | SR_BP1 | SR_BP0;
if (nor->mtd.size == BP_SZ_16M) {
flash_protection = esmt_protection;
flash_protection_size = ARRAY_SIZE(esmt_protection);
} else {
flash_protection = esmt_protection_8M;
flash_protection_size = ARRAY_SIZE(esmt_protection_8M);
}
} else if (JEDEC_MFR(nor->info) == SNOR_MFR_GIGADEVICE) {
mask = SR_BP4 | SR_BP3 | SR_BP2 | SR_BP1 | SR_BP0;
flash_protection = gd_protection;
flash_protection_size = ARRAY_SIZE(gd_protection);
} else {
dev_err(nor->dev, "not support lock 0x%x\n",
JEDEC_MFR(nor->info));
*ofs = 0;
*len = 0;
return;
}
shift = ffs(mask) - 1;
bp_check = (sr & mask) >> shift;
if (!(sr & mask)) {
/* No protection */
*ofs = 0;
*len = 0;
} else {
for (i = 0; i < flash_protection_size; i++) {
if (bp_check == flash_protection[i].bp) {
*len = flash_protection[i].boundary;
break;
}
}
if (JEDEC_MFR(nor->info) == SNOR_MFR_MACRONIX) {
/* if (nor->flags & SNOR_F_HAS_CR_TB && cr & CR_TB_MX) */
/* *ofs = 0; */
/* else */
/* *ofs = mtd->size - *len; */
*ofs = 0; /* now only support bottom in mxic_protection */
} else if (JEDEC_MFR(nor->info) == SNOR_MFR_EON) {
/* TODO: read TB */
*ofs = 0; /* now only support bottom in esmt_protection */
} else if (JEDEC_MFR(nor->info) == SNOR_MFR_GIGADEVICE) {
/* TODO: read TB */
*ofs = 0; /* now only support bottom in gd_protection */
}
}
dev_dbg(nor->dev, "ofs:0x%llx,len=0x%llx flag:0x%x sr:0x%x cr:0x%x\n",
*ofs, *len, nor->flags, sr, cr);
}
/*
* Return 1 if the entire region is locked (if @locked is true) or unlocked (if
* @locked is false); 0 otherwise
*/
static int sunxi_check_lock_status_sr_cr(struct spi_nor *nor, loff_t ofs,
u64 len, u8 sr, u8 cr, bool locked)
{
loff_t lock_offs;
uint64_t lock_len;
if (!len)
return 1;
sunxi_get_locked_range(nor, sr, cr, &lock_offs, &lock_len);
if (locked)
/* Requested range is a sub-range of locked range */
return (ofs + len <= lock_offs + lock_len) && (ofs >= lock_offs);
else
/* Requested range does not overlap with locked range */
return (ofs >= lock_offs + lock_len) || (ofs + len <= lock_offs);
}
static int sunxi_is_locked_sr_cr(struct spi_nor *nor, loff_t ofs,
uint64_t len, u8 sr, u8 cr)
{
return sunxi_check_lock_status_sr_cr(nor, ofs, len, sr, cr, true);
}
static int sunxi_is_unlocked_sr_cr(struct spi_nor *nor, loff_t ofs,
uint64_t len, u8 sr, u8 cr)
{
return sunxi_check_lock_status_sr_cr(nor, ofs, len, sr, cr, false);
}
static int sunxi_handle_lock(struct spi_nor *nor, loff_t ofs,
uint64_t len, int lock)
{
struct mtd_info *mtd = &nor->mtd;
int status_old = 0, status_new = 0;
int config_old = 0, config_new = 0;
int otp_status_old = 0, otp_status_new = 0;
u8 mask, shift, val = 0;
loff_t lock_len;
/* hardcode now, sunxi only use bottom */
bool can_be_top = false, can_be_bottom = true;
bool use_bottom;
int i, ret, protect_flag = 0, flash_protection_size = 0;
struct nor_protection *flash_protection = NULL;
if (JEDEC_MFR(nor->info) == SNOR_MFR_MACRONIX) {
flash_protection = mxic_protection;
flash_protection_size = ARRAY_SIZE(mxic_protection);
mask = SR_BP3 | SR_BP2 | SR_BP1 | SR_BP0;
config_old = read_cr(nor);
if (config_old < 0)
return config_old;
} else if (JEDEC_MFR(nor->info) == SNOR_MFR_EON) {
if (JEDEC_ID(nor->info) == GM_64A_ID) {
dev_dbg(nor->dev, "not support lock 0x%x\n",
JEDEC_ID(nor->info));
return 0;
}
if (mtd->size == BP_SZ_16M) {
flash_protection = esmt_protection;
flash_protection_size = ARRAY_SIZE(esmt_protection);
} else {
flash_protection = esmt_protection_8M;
flash_protection_size = ARRAY_SIZE(esmt_protection_8M);
}
mask = SR_BP3 | SR_BP2 | SR_BP1 | SR_BP0;
otp_status_old = read_otp_sr(nor);
if (otp_status_old < 0)
return otp_status_old;
} else if (JEDEC_MFR(nor->info) == SNOR_MFR_GIGADEVICE) {
flash_protection = gd_protection;
flash_protection_size = ARRAY_SIZE(gd_protection);
mask = SR_BP4 | SR_BP3 | SR_BP2 | SR_BP1 | SR_BP0;
} else {
dev_dbg(nor->dev, "not support lock 0x%x\n",
JEDEC_MFR(nor->info));
return 0;
}
shift = ffs(mask) - 1;
status_old = read_sr(nor);
if (status_old < 0)
return status_old;
if (lock) {
/* If nothing in our range is unlocked, we don't need to do anything */
if (sunxi_is_locked_sr_cr(nor, ofs, len,
status_old, config_old))
return 0;
} else {
/* If nothing in our range is locked, we don't need to do anything */
if (sunxi_is_unlocked_sr_cr(nor, ofs, len,
status_old, config_old))
return 0;
}
if (!can_be_bottom && !can_be_top)
return -EINVAL;
/* for sunxi, prefer bottom */
use_bottom = can_be_bottom;
/* lock_len: length of region that should end up locked */
if (use_bottom)
lock_len = lock ? (ofs + len) : ofs;
else
lock_len = lock ? (mtd->size - ofs) : (mtd->size - (ofs + len));
/* in case over the max, we set the max default */
val = flash_protection[flash_protection_size - 1].bp << shift;
protect_flag = flash_protection[flash_protection_size - 1].flag;
for (i = 1; i < flash_protection_size; i++) {
if (lock_len < flash_protection[i].boundary) {
val = flash_protection[i - 1].bp << shift;
protect_flag = flash_protection[i - 1].flag;
break;
}
}
dev_dbg(nor->dev, "sunxi_lock:%d val:0x%x, flag:0x%x\n",
lock, val, protect_flag);
status_new = (status_old & ~mask) | (val & mask);
#if 0 /* not suitable for gd */
if (lock) {
/* Only modify protection if it will not unlock other areas */
if ((status_new & mask) < (status_old & mask))
return -EINVAL;
} else {
/* Only modify protection if it will not lock other areas */
if ((status_new & mask) > (status_old & mask))
return -EINVAL;
}
#endif
if (JEDEC_MFR(nor->info) == SNOR_MFR_MACRONIX) {
if (protect_flag & SET_TB)
config_new = config_old | CR_TB_MX;
else
config_new = config_old & ~CR_TB_MX;
if ((status_old != status_new) || (config_old != config_new)) {
u8 sr_cr[2] = {status_new, config_new};
ret = write_sr_cr(nor, sr_cr);
if (ret)
return ret;
}
dev_dbg(nor->dev, "sr:0x%x --> 0x%x cr:0x%x --> 0x%x\n",
status_old, status_new, config_old, config_new);
} else if (JEDEC_MFR(nor->info) == SNOR_MFR_EON) {
if (protect_flag & SET_TB) {
otp_status_new = otp_status_old | OTP_SR_TB_EON;
} else {
otp_status_new = otp_status_old & ~OTP_SR_TB_EON;
}
if (otp_status_old != otp_status_new) {
ret = write_otp_sr(nor, otp_status_new);
if (ret)
return ret;
}
if (status_old != status_new) {
ret = write_sr_and_check(nor, status_new, mask);
if (ret)
return ret;
}
dev_dbg(nor->dev, "sr:0x%x --> 0x%x otp_sr:0x%x --> 0x%x\n",
status_old, status_new, otp_status_old,
otp_status_new);
} else if (JEDEC_MFR(nor->info) == SNOR_MFR_GIGADEVICE) {
if (protect_flag & SET_CMP)
ret = gigadevice_config_cmp(nor, 1);
else
ret = gigadevice_config_cmp(nor, 0);
if (ret)
return ret;
if (status_old != status_new) {
ret = write_sr_and_check(nor, status_new, mask);
if (ret)
return ret;
}
dev_dbg(nor->dev, "sr:0x%x --> 0x%x\n", status_old, status_new);
}
return 0;
}
static int sunxi_lock(struct spi_nor *nor, loff_t ofs, uint64_t len)
{
return sunxi_handle_lock(nor, ofs, len, true);
}
static int sunxi_unlock(struct spi_nor *nor, loff_t ofs, uint64_t len)
{
return sunxi_handle_lock(nor, ofs, len, false);
}
/*
* Check if a region of the flash is (completely) locked. See sunxi_lock() for
* more info.
*
* Returns 1 if entire region is locked, 0 if any portion is unlocked, and
* negative on errors.
*/
static int sunxi_is_locked(struct spi_nor *nor, loff_t ofs, uint64_t len)
{
int status = 0;
int config = 0;
status = read_sr(nor);
if (status < 0)
return status;
if (JEDEC_MFR(nor->info) == SNOR_MFR_MACRONIX) {
config = read_cr(nor);
if (config < 0)
return config;
}
return sunxi_is_locked_sr_cr(nor, ofs, len, status, config);
}
static int sunxi_individual_lock_status(struct spi_nor *nor,
loff_t ofs, uint64_t len, bool locked)
{
u8 read_opcode, read_dummy;
loff_t ofs_lock = ofs;
loff_t ofs_lock_end = ofs + len;
u8 lock_status;
u8 addr_width;
u8 lock_mask;
if (ofs > nor->mtd.size) {
dev_err(nor->dev, "The lock address exceeds the flash size\n");
return -1;
}
if (ofs_lock_end > nor->mtd.size)
ofs_lock_end = nor->mtd.size - ofs_lock;
if (locked)
lock_mask = 0xff;
else
lock_mask = 0;
/* align down */
if ((ofs_lock < NOR_LOCK_BLOCK_SIZE) ||
(ofs_lock >= nor->mtd.size - NOR_LOCK_BLOCK_SIZE))
ofs_lock &= ~(NOR_LOCK_SECTOR_SIZE - 1);
else
ofs_lock &= ~(NOR_LOCK_BLOCK_SIZE - 1);
read_opcode = nor->read_opcode;
read_dummy = nor->read_dummy;
addr_width = nor->addr_width;
nor->read_opcode = SPINOR_OP_RDBLK;
nor->read_dummy = 0;
write_enable(nor);
switch (JEDEC_MFR(nor->info)) {
case SNOR_MFR_MXIC:
nor->read_opcode = SPINOR_OP_MXICRBLK;
nor->addr_width = 4;
while (ofs_lock < ofs_lock_end) {
nor->read(nor, ofs_lock, 1, &lock_status);
dev_dbg(nor->dev, "check %s to:%lld lock_status:%d\n",
locked ? "lock" : "unlock",
ofs_lock, lock_status);
/* 0xff is locked sign */
if (lock_status == lock_mask) {
if ((ofs_lock < NOR_LOCK_BLOCK_SIZE) ||
(ofs_lock >= nor->mtd.size - NOR_LOCK_BLOCK_SIZE))
/* sector for first and last block */
ofs_lock += NOR_LOCK_SECTOR_SIZE;
else
/* block for middle blocks */
ofs_lock += NOR_LOCK_BLOCK_SIZE;
continue;
} else {
nor->read_opcode = read_opcode;
nor->read_dummy = read_dummy;
nor->addr_width = addr_width;
return -1;
}
}
break;
case SNOR_MFR_WINBOND:
case SNOR_MFR_PUYA:
case SNOR_MFR_FM:
case SNOR_MFR_XTX:
while (ofs_lock < ofs_lock_end) {
nor->read(nor, ofs_lock, 1, &lock_status);
dev_dbg(nor->dev, "check %s to:%lld lock_status:%d\n",
locked == 1 ? "lock" : "unlock",
ofs_lock, lock_status);
if (lock_status != locked) {
nor->read_opcode = read_opcode;
nor->read_dummy = read_dummy;
return -1;
}
if ((ofs_lock < NOR_LOCK_BLOCK_SIZE) ||
(ofs_lock >= nor->mtd.size - NOR_LOCK_BLOCK_SIZE))
/* sector for first and last block */
ofs_lock += NOR_LOCK_SECTOR_SIZE;
else
/* block for middle blocks */
ofs_lock += NOR_LOCK_BLOCK_SIZE;
}
break;
default:
dev_err(nor->dev, "not support individual is lock nor 0x%x\n",
JEDEC_MFR(nor->info));
}
nor->read_opcode = read_opcode;
nor->read_dummy = read_dummy;
nor->addr_width = addr_width;
return 1;
}
static int sunxi_individual_is_lock(struct spi_nor *nor,
loff_t ofs, uint64_t len)
{
return sunxi_individual_lock_status(nor, ofs, len, true);
}
#ifdef WLOCK_CHECK
static int sunxi_individual_is_unlock(struct spi_nor *nor,
loff_t ofs, uint64_t len)
{
return sunxi_individual_lock_status(nor, ofs, len, false);
}
#endif
/* Write status register and ensure bits in mask match written values */
static int write_lock_and_check(struct spi_nor *nor, loff_t to, bool locked)
{
int ret;
#ifdef WLOCK_CHECK
int check_len;
if ((to < NOR_LOCK_BLOCK_SIZE) ||
(to >= nor->mtd.size - NOR_LOCK_BLOCK_SIZE))
check_len = NOR_LOCK_SECTOR_SIZE;
else
check_len = NOR_LOCK_BLOCK_SIZE;
#endif
write_enable(nor);
ret = nor->write(nor, to, 0, NULL);
ret = spi_nor_wait_till_ready(nor);
if (ret)
return -1;
#ifdef WLOCK_CHECK
if (locked)
ret = sunxi_individual_is_lock(nor, to, check_len);
else
ret = sunxi_individual_is_unlock(nor, to, check_len);
#endif
return ret < 0 ? ret : 0;
}
/* Write DPB register lock block/sector */
static int write_mxic_lock(struct spi_nor *nor, loff_t ofs, uint64_t len, bool locked)
{
u32 ret;
u_char lock_com;
loff_t ofs_lock = ofs;
loff_t ofs_lock_end = ofs + len;
if (ofs_lock_end > nor->mtd.size)
ofs_lock_end = nor->mtd.size - ofs_lock;
if (locked) {
lock_com = 0xff;
/* area is locked, no need to do antrhing */
if (sunxi_individual_is_lock(nor, ofs_lock, len) > 0)
return 0;
} else {
lock_com = 0;
#ifdef WLOCK_CHECK
/* area is locked, no need to do antrhing */
if (sunxi_individual_is_unlock(nor, ofs_lock, len) > 0)
return 0;
#endif
}
while (ofs_lock < ofs_lock_end) {
write_enable(nor);
ret = nor->write(nor, ofs_lock, 1, &lock_com);
if ((ofs_lock < NOR_LOCK_BLOCK_SIZE) ||
(ofs_lock >= nor->mtd.size - NOR_LOCK_BLOCK_SIZE))
/* sector for first and last block */
ofs_lock += NOR_LOCK_SECTOR_SIZE;
else
/* block for middle blocks */
ofs_lock += NOR_LOCK_BLOCK_SIZE;
}
return ret < 0 ? ret : 0;
}
/*
* Support Individual Locks functions
* the device will utilize the Individual Block Locks to protect any
* individual sector or block.
*/
static int sunxi_individual_lock_global(struct spi_nor *nor)
{
write_enable(nor);
switch (JEDEC_MFR(nor->info)) {
case SNOR_MFR_WINBOND:
case SNOR_MFR_PUYA:
case SNOR_MFR_FM:
case SNOR_MFR_XTX:
case SNOR_MFR_MXIC:
return nor->write_reg(nor, SPINOR_OP_GBLK, NULL, 0);
default:
dev_err(nor->dev, "not support individual global lock nor 0x%x\n",
JEDEC_MFR(nor->info));
}
return 0;
}
static int sunxi_individual_unlock_global(struct spi_nor *nor)
{
write_enable(nor);
switch (JEDEC_MFR(nor->info)) {
case SNOR_MFR_WINBOND:
case SNOR_MFR_PUYA:
case SNOR_MFR_FM:
case SNOR_MFR_XTX:
return nor->write_reg(nor, SPINOR_OP_UGBLK, NULL, 0);
case SNOR_MFR_MXIC:
nor->write_reg(nor, SPINOR_OP_USPB, NULL, 0);
spi_nor_wait_till_ready(nor);
write_enable(nor);
return nor->write_reg(nor, SPINOR_OP_UGBLK, NULL, 0);
default:
dev_err(nor->dev,
"not support individual global unlock nor 0x%x\n",
JEDEC_MFR(nor->info));
}
return 0;
}
static int sunxi_individual_handle_lock(struct spi_nor *nor,
loff_t ofs, uint64_t len, bool locked)
{
u8 program_opcode;
u32 ret;
u8 read_opcode;
u8 read_dummy;
u8 addr_width;
loff_t ofs_lock = ofs;
loff_t ofs_lock_end = ofs + len;
if (ofs > nor->mtd.size) {
dev_err(nor->dev, "The lock address exceeds the flash size\n");
return -1;
}
if (ofs_lock_end > nor->mtd.size)
ofs_lock_end = nor->mtd.size - ofs_lock;
/* align down */
if ((ofs_lock < NOR_LOCK_BLOCK_SIZE) ||
(ofs_lock >= nor->mtd.size - NOR_LOCK_BLOCK_SIZE))
ofs_lock &= ~(NOR_LOCK_SECTOR_SIZE - 1);
else
ofs_lock &= ~(NOR_LOCK_BLOCK_SIZE - 1);
read_opcode = nor->read_opcode;
read_dummy = nor->read_dummy;
program_opcode = nor->program_opcode;
addr_width = nor->addr_width;
write_enable(nor);
switch (JEDEC_MFR(nor->info)) {
case SNOR_MFR_MXIC:
nor->program_opcode = SPINOR_OP_MXICWBLK;
nor->read_opcode = SPINOR_OP_MXICRBLK;
nor->read_dummy = 0;
nor->addr_width = 4;
write_mxic_lock(nor, ofs_lock, len, locked);
break;
case SNOR_MFR_WINBOND:
case SNOR_MFR_PUYA:
case SNOR_MFR_FM:
case SNOR_MFR_XTX:
if (locked)
nor->program_opcode = SPINOR_OP_IBLK;
else
nor->program_opcode = SPINOR_OP_UIBLK;
while (ofs_lock < ofs_lock_end) {
dev_dbg(nor->dev, "%s handle to:%lld\n",
locked ?
"lock" : "unlock", ofs_lock);
ret = write_lock_and_check(nor, ofs_lock, locked);
if (ret)
dev_err(nor->dev, "%s to:%lld err\n",
locked ?
"lock" : "unlock", ofs_lock);
if ((ofs_lock < NOR_LOCK_BLOCK_SIZE) ||
(ofs_lock >= nor->mtd.size - NOR_LOCK_BLOCK_SIZE))
/* sector for first and last block */
ofs_lock += NOR_LOCK_SECTOR_SIZE;
else
/* block for middle blocks */
ofs_lock += NOR_LOCK_BLOCK_SIZE;
}
break;
default:
dev_err(nor->dev, "not support individual lock nor 0x%x...\n",
JEDEC_MFR(nor->info));
}
nor->read_opcode = read_opcode;
nor->read_dummy = read_dummy;
nor->program_opcode = program_opcode;
nor->addr_width = addr_width;
return 0;
}
static int sunxi_individual_lock(struct spi_nor *nor, loff_t ofs, uint64_t len)
{
if (ofs == 0 && len == nor->mtd.size)
return sunxi_individual_lock_global(nor);
return sunxi_individual_handle_lock(nor, ofs, len, true);
}
static int sunxi_individual_unlock(struct spi_nor *nor,
loff_t ofs, uint64_t len)
{
if (ofs == 0 && len == nor->mtd.size)
return sunxi_individual_unlock_global(nor);
return sunxi_individual_handle_lock(nor, ofs, len, false);
}
static int sunxi_individual_lock_enable(struct spi_nor *nor)
{
u8 status;
switch (JEDEC_MFR(nor->info)) {
case SNOR_MFR_WINBOND:
case SNOR_MFR_PUYA:
status = read_sr3(nor);
write_sr3(nor, status | SR_WPS_EN_WINBOND);
if (read_sr3(nor) | SR_WPS_EN_WINBOND)
return 0;
else
return -1;
case SNOR_MFR_FM:
status = read_sr2(nor);
write_sr2(nor, status | SR_WPS_EN_FM);
if (read_sr2(nor) | SR_WPS_EN_FM)
return 0;
else
return -1;
case SNOR_MFR_XTX:
status = read_sr2(nor);
write_sr2(nor, status | SR_WPS_EN_XTX);
if (read_sr2(nor) | SR_WPS_EN_XTX)
return 0;
else
return -1;
default:
dev_err(nor->dev, "not support individual lock nor 0x%x\n",
JEDEC_MFR(nor->info));
}
return -1;
}
static int sunxi_individual_lock_is_enable(struct spi_nor *nor)
{
switch (JEDEC_MFR(nor->info)) {
case SNOR_MFR_WINBOND:
case SNOR_MFR_PUYA:
if (read_sr3(nor) & SR_WPS_EN_WINBOND)
return 1;
else
return 0;
case SNOR_MFR_FM:
if (read_sr2(nor) & SR_WPS_EN_FM)
return 1;
else
return 0;
case SNOR_MFR_XTX:
if (read_sr2(nor) & SR_WPS_EN_XTX)
return 1;
else
return 0;
case SNOR_MFR_MXIC:
if (read_mxic_sr(nor) & SR_WPSEL)
return 1;
else
return 0;
default:
return 0;
}
}
static void sunxi_individual_lock_init(struct spi_nor *nor)
{
unsigned int rval = 0;
if (nor->info->flags & SPI_NOR_INDIVIDUAL_LOCK) {
if (!of_property_read_u32(nor->dev->of_node,
"individual_lock", &rval)) {
if (rval) {
nor->flags |= SNOR_F_INDIVIDUAL_LOCK;
sunxi_individual_lock_enable(nor);
}
} else
dev_err(nor->dev, "get individual_lock fail\n");
}
/*
* If the Individual lock is not used and the Flash is locked,
* it will be unlocked globally
*/
if (!(nor->flags & SNOR_F_INDIVIDUAL_LOCK))
if (sunxi_individual_lock_is_enable(nor))
sunxi_individual_unlock_global(nor);
return;
}
static int spi_nor_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
{
struct spi_nor *nor = mtd_to_spi_nor(mtd);
int ret;
ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_LOCK);
if (ret)
return ret;
ret = nor->flash_lock(nor, ofs, len);
spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_UNLOCK);
return ret;
}
static int spi_nor_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
{
struct spi_nor *nor = mtd_to_spi_nor(mtd);
int ret;
ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_UNLOCK);
if (ret)
return ret;
ret = nor->flash_unlock(nor, ofs, len);
spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_LOCK);
return ret;
}
static int spi_nor_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
{
struct spi_nor *nor = mtd_to_spi_nor(mtd);
int ret;
ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_UNLOCK);
if (ret)
return ret;
ret = nor->flash_is_locked(nor, ofs, len);
spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_LOCK);
return ret;
}
/* Used when the "_ext_id" is two bytes at most */
#define _INFO(_jedec_id, _ext_id, _sector_size, _n_sectors, _n_banks, _flags) \
.id = { \
((_jedec_id) >> 16) & 0xff, \
((_jedec_id) >> 8) & 0xff, \
(_jedec_id) & 0xff, \
((_ext_id) >> 8) & 0xff, \
(_ext_id) & 0xff, \
}, \
.id_len = (!(_jedec_id) ? 0 : (3 + ((_ext_id) ? 2 : 0))), \
.sector_size = (_sector_size), \
.n_sectors = (_n_sectors), \
.page_size = 256, \
.n_banks = _n_banks, \
.flags = (_flags),
#define INFO(_jedec_id, _ext_id, _sector_size, _n_sectors, _flags) \
_INFO(_jedec_id, _ext_id, _sector_size, _n_sectors, 0, _flags)
#define INFO6(_jedec_id, _ext_id, _sector_size, _n_sectors, _flags) \
.id = { \
((_jedec_id) >> 16) & 0xff, \
((_jedec_id) >> 8) & 0xff, \
(_jedec_id) & 0xff, \
((_ext_id) >> 16) & 0xff, \
((_ext_id) >> 8) & 0xff, \
(_ext_id) & 0xff, \
}, \
.id_len = 6, \
.sector_size = (_sector_size), \
.n_sectors = (_n_sectors), \
.n_banks = 0, \
.page_size = 256, \
.flags = (_flags),
#define CAT25_INFO(_sector_size, _n_sectors, _page_size, _addr_width, _flags) \
.sector_size = (_sector_size), \
.n_sectors = (_n_sectors), \
.page_size = (_page_size), \
.addr_width = (_addr_width), \
.flags = (_flags),
/* NOTE: double check command sets and memory organization when you add
* more nor chips. This current list focusses on newer chips, which
* have been converging on command sets which including JEDEC ID.
*
* All newly added entries should describe *hardware* and should use SECT_4K
* (or SECT_4K_PMC) if hardware supports erasing 4 KiB sectors. For usage
* scenarios excluding small sectors there is config option that can be
* disabled: CONFIG_MTD_SPI_NOR_USE_4K_SECTORS.
* For historical (and compatibility) reasons (before we got above config) some
* old entries may be missing 4K flag.
*/
static const struct flash_info spi_nor_ids[] = {
/* Atmel -- some are (confusingly) marketed as "DataFlash" */
{ "at25fs010", INFO(0x1f6601, 0, 32 * 1024, 4, SECT_4K) },
{ "at25fs040", INFO(0x1f6604, 0, 64 * 1024, 8, SECT_4K) },
{ "at25df041a", INFO(0x1f4401, 0, 64 * 1024, 8, SECT_4K) },
{ "at25df321a", INFO(0x1f4701, 0, 64 * 1024, 64, SECT_4K) },
{ "at25df641", INFO(0x1f4800, 0, 64 * 1024, 128, SECT_4K) },
{ "at26f004", INFO(0x1f0400, 0, 64 * 1024, 8, SECT_4K) },
{ "at26df081a", INFO(0x1f4501, 0, 64 * 1024, 16, SECT_4K) },
{ "at26df161a", INFO(0x1f4601, 0, 64 * 1024, 32, SECT_4K) },
{ "at26df321", INFO(0x1f4700, 0, 64 * 1024, 64, SECT_4K) },
{ "at45db081d", INFO(0x1f2500, 0, 64 * 1024, 16, SECT_4K) },
/* EON -- en25xxx */
{ "en25f32", INFO(0x1c3116, 0, 64 * 1024, 64, SECT_4K) },
{ "en25p32", INFO(0x1c2016, 0, 64 * 1024, 64, 0) },
{ "en25q32b", INFO(0x1c3016, 0, 64 * 1024, 64, 0) },
{ "en25p64", INFO(0x1c2017, 0, 64 * 1024, 128, 0) },
{ "en25q64", INFO(0x1c3017, 0, 64 * 1024, 128, SECT_4K) },
{ "en25qh64a", INFO(0x1c7017, 0, 64 * 1024, 128, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
{ "en25qh128", INFO(0x1c7018, 0, 64 * 1024, 256, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
{ "en25qh256", INFO(0x1c7019, 0, 64 * 1024, 512, 0) },
{ "en25s64", INFO(0x1c3817, 0, 64 * 1024, 128, SECT_4K) },
{ "en25qx128", INFO(0x1c7118, 0, 64 * 1024, 256, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
/* ESMT */
{ "f25l32pa", INFO(0x8c2016, 0, 64 * 1024, 64, SECT_4K) },
/* Everspin */
{ "mr25h256", CAT25_INFO( 32 * 1024, 1, 256, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
{ "mr25h10", CAT25_INFO(128 * 1024, 1, 256, 3, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
/* Fujitsu */
{ "mb85rs1mt", INFO(0x047f27, 0, 128 * 1024, 1, SPI_NOR_NO_ERASE) },
/* GigaDevice */
{
"gd25q32", INFO(0xc84016, 0, 64 * 1024, 64,
SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB)
},
{
"gd25q64", INFO(0xc84017, 0, 64 * 1024, 128,
SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB)
},
{
"gd25lq64c", INFO(0xc86017, 0, 64 * 1024, 128,
SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB)
},
{
"gd25q128", INFO(0xc84018, 0, 64 * 1024, 256,
SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB)
},
{
"gd25q256d", INFO(0xc84019, 0, 64 * 1024, 512,
SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB)
},
{
"gd25f256f", INFO(0xc84319, 0x0, 64 * 1024, 512,
SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ)
},
/* Intel/Numonyx -- xxxs33b */
{ "160s33b", INFO(0x898911, 0, 64 * 1024, 32, 0) },
{ "320s33b", INFO(0x898912, 0, 64 * 1024, 64, 0) },
{ "640s33b", INFO(0x898913, 0, 64 * 1024, 128, 0) },
/* ISSI */
{ "is25cd512", INFO(0x7f9d20, 0, 32 * 1024, 2, SECT_4K) },
{ "is25wp032", INFO(0x9d7016, 0, 64 * 1024, 64,
SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
{ "is25wp064", INFO(0x9d7017, 0, 64 * 1024, 128,
SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
{ "is25wp128", INFO(0x9d7018, 0, 64 * 1024, 256,
SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
/* Macronix */
{ "mx25l512e", INFO(0xc22010, 0, 64 * 1024, 1, SECT_4K) },
{ "mx25l2005a", INFO(0xc22012, 0, 64 * 1024, 4, SECT_4K) },
{ "mx25l4005a", INFO(0xc22013, 0, 64 * 1024, 8, SECT_4K) },
{ "mx25l8005", INFO(0xc22014, 0, 64 * 1024, 16, 0) },
{ "mx25l1606e", INFO(0xc22015, 0, 64 * 1024, 32, SECT_4K) },
{ "mx25l3205d", INFO(0xc22016, 0, 64 * 1024, 64, SECT_4K) },
{ "mx25l3255e", INFO(0xc29e16, 0, 64 * 1024, 64, SECT_4K) },
{ "mx25l6405d", INFO(0xc22017, 0, 64 * 1024, 128, SECT_4K) },
{ "mx25u6435f", INFO(0xc22537, 0, 64 * 1024, 128, SECT_4K) },
{ "mx25l12835f", INFO(0xc22018, 0, 64 * 1024, 256, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
{ "mx25l12805d", INFO(0xc22018, 0, 64 * 1024, 256, 0) },
{ "mx25l12855e", INFO(0xc22618, 0, 64 * 1024, 256, 0) },
{ "mx25l25635e", INFO(0xc22019, 0, 64 * 1024, 512, 0) },
{ "mx25l25655e", INFO(0xc22619, 0, 64 * 1024, 512, 0) },
{ "mx66l51235l", INFO(0xc2201a, 0, 64 * 1024, 1024, SPI_NOR_QUAD_READ) },
{ "mx66l1g55g", INFO(0xc2261b, 0, 64 * 1024, 2048, SPI_NOR_QUAD_READ) },
/* Micron */
{ "n25q032", INFO(0x20ba16, 0, 64 * 1024, 64, SPI_NOR_QUAD_READ) },
{ "n25q032a", INFO(0x20bb16, 0, 64 * 1024, 64, SPI_NOR_QUAD_READ) },
{ "n25q064", INFO(0x20ba17, 0, 64 * 1024, 128, SECT_4K | SPI_NOR_QUAD_READ) },
{ "n25q064a", INFO(0x20bb17, 0, 64 * 1024, 128, SECT_4K | SPI_NOR_QUAD_READ) },
{ "n25q128a11", INFO(0x20bb18, 0, 64 * 1024, 256, SECT_4K | SPI_NOR_QUAD_READ) },
{ "n25q128a13", INFO(0x20ba18, 0, 64 * 1024, 256, SECT_4K | SPI_NOR_QUAD_READ) },
{ "n25q256a", INFO(0x20ba19, 0, 64 * 1024, 512, SECT_4K | SPI_NOR_QUAD_READ) },
{ "n25q512a", INFO(0x20bb20, 0, 64 * 1024, 1024, SECT_4K | USE_FSR | SPI_NOR_QUAD_READ) },
{ "n25q512ax3", INFO(0x20ba20, 0, 64 * 1024, 1024, SECT_4K | USE_FSR | SPI_NOR_QUAD_READ) },
{ "n25q00", INFO(0x20ba21, 0, 64 * 1024, 2048, SECT_4K | USE_FSR | SPI_NOR_QUAD_READ) },
{ "n25q00a", INFO(0x20bb21, 0, 64 * 1024, 2048, SECT_4K | USE_FSR | SPI_NOR_QUAD_READ) },
/* PMC */
{ "pm25lv512", INFO(0, 0, 32 * 1024, 2, SECT_4K_PMC) },
{ "pm25lv010", INFO(0, 0, 32 * 1024, 4, SECT_4K_PMC) },
{ "pm25lq032", INFO(0x7f9d46, 0, 64 * 1024, 64, SECT_4K) },
/* Spansion -- single (large) sector size only, at least
* for the chips listed here (without boot sectors).
*/
{ "s25sl032p", INFO(0x010215, 0x4d00, 64 * 1024, 64, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
{ "s25sl064p", INFO(0x010216, 0x4d00, 64 * 1024, 128, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
{ "s25fl256s0", INFO(0x010219, 0x4d00, 256 * 1024, 128, 0) },
{ "s25fl256s1", INFO(0x010219, 0x4d01, 64 * 1024, 512, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
{ "s25fl512s", INFO(0x010220, 0x4d00, 256 * 1024, 256, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
{ "s70fl01gs", INFO(0x010221, 0x4d00, 256 * 1024, 256, 0) },
{ "s25sl12800", INFO(0x012018, 0x0300, 256 * 1024, 64, 0) },
{ "s25sl12801", INFO(0x012018, 0x0301, 64 * 1024, 256, 0) },
{ "s25fl128s", INFO6(0x012018, 0x4d0180, 64 * 1024, 256, SECT_4K | SPI_NOR_QUAD_READ) },
{ "s25fl129p0", INFO(0x012018, 0x4d00, 256 * 1024, 64, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
{ "s25fl129p1", INFO(0x012018, 0x4d01, 64 * 1024, 256, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
{ "s25sl004a", INFO(0x010212, 0, 64 * 1024, 8, 0) },
{ "s25sl008a", INFO(0x010213, 0, 64 * 1024, 16, 0) },
{ "s25sl016a", INFO(0x010214, 0, 64 * 1024, 32, 0) },
{ "s25sl032a", INFO(0x010215, 0, 64 * 1024, 64, 0) },
{ "s25sl064a", INFO(0x010216, 0, 64 * 1024, 128, 0) },
{ "s25fl004k", INFO(0xef4013, 0, 64 * 1024, 8, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
{ "s25fl008k", INFO(0xef4014, 0, 64 * 1024, 16, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
{ "s25fl016k", INFO(0xef4015, 0, 64 * 1024, 32, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
{ "s25fl064k", INFO(0xef4017, 0, 64 * 1024, 128, SECT_4K) },
{ "s25fl116k", INFO(0x014015, 0, 64 * 1024, 32, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
{ "s25fl132k", INFO(0x014016, 0, 64 * 1024, 64, SECT_4K) },
{ "s25fl164k", INFO(0x014017, 0, 64 * 1024, 128, SECT_4K) },
{ "s25fl204k", INFO(0x014013, 0, 64 * 1024, 8, SECT_4K | SPI_NOR_DUAL_READ) },
/* SST -- large erase sizes are "overlays", "sectors" are 4K */
{ "sst25vf040b", INFO(0xbf258d, 0, 64 * 1024, 8, SECT_4K | SST_WRITE) },
{ "sst25vf080b", INFO(0xbf258e, 0, 64 * 1024, 16, SECT_4K | SST_WRITE) },
{ "sst25vf016b", INFO(0xbf2541, 0, 64 * 1024, 32, SECT_4K | SST_WRITE) },
{ "sst25vf032b", INFO(0xbf254a, 0, 64 * 1024, 64, SECT_4K | SST_WRITE) },
{ "sst25vf064c", INFO(0xbf254b, 0, 64 * 1024, 128, SECT_4K) },
{ "sst25wf512", INFO(0xbf2501, 0, 64 * 1024, 1, SECT_4K | SST_WRITE) },
{ "sst25wf010", INFO(0xbf2502, 0, 64 * 1024, 2, SECT_4K | SST_WRITE) },
{ "sst25wf020", INFO(0xbf2503, 0, 64 * 1024, 4, SECT_4K | SST_WRITE) },
{ "sst25wf020a", INFO(0x621612, 0, 64 * 1024, 4, SECT_4K) },
{ "sst25wf040b", INFO(0x621613, 0, 64 * 1024, 8, SECT_4K) },
{ "sst25wf040", INFO(0xbf2504, 0, 64 * 1024, 8, SECT_4K | SST_WRITE) },
{ "sst25wf080", INFO(0xbf2505, 0, 64 * 1024, 16, SECT_4K | SST_WRITE) },
/* ST Microelectronics -- newer production may have feature updates */
{ "m25p05", INFO(0x202010, 0, 32 * 1024, 2, 0) },
{ "m25p10", INFO(0x202011, 0, 32 * 1024, 4, 0) },
{ "m25p20", INFO(0x202012, 0, 64 * 1024, 4, 0) },
{ "m25p40", INFO(0x202013, 0, 64 * 1024, 8, 0) },
{ "m25p80", INFO(0x202014, 0, 64 * 1024, 16, 0) },
{ "m25p16", INFO(0x202015, 0, 64 * 1024, 32, 0) },
{ "m25p32", INFO(0x202016, 0, 64 * 1024, 64, 0) },
{ "m25p64", INFO(0x202017, 0, 64 * 1024, 128, 0) },
{ "m25p128", INFO(0x202018, 0, 256 * 1024, 64, 0) },
{ "m25p05-nonjedec", INFO(0, 0, 32 * 1024, 2, 0) },
{ "m25p10-nonjedec", INFO(0, 0, 32 * 1024, 4, 0) },
{ "m25p20-nonjedec", INFO(0, 0, 64 * 1024, 4, 0) },
{ "m25p40-nonjedec", INFO(0, 0, 64 * 1024, 8, 0) },
{ "m25p80-nonjedec", INFO(0, 0, 64 * 1024, 16, 0) },
{ "m25p16-nonjedec", INFO(0, 0, 64 * 1024, 32, 0) },
{ "m25p32-nonjedec", INFO(0, 0, 64 * 1024, 64, 0) },
{ "m25p64-nonjedec", INFO(0, 0, 64 * 1024, 128, 0) },
{ "m25p128-nonjedec", INFO(0, 0, 256 * 1024, 64, 0) },
{ "m45pe10", INFO(0x204011, 0, 64 * 1024, 2, 0) },
{ "m45pe80", INFO(0x204014, 0, 64 * 1024, 16, 0) },
{ "m45pe16", INFO(0x204015, 0, 64 * 1024, 32, 0) },
{ "m25pe20", INFO(0x208012, 0, 64 * 1024, 4, 0) },
{ "m25pe80", INFO(0x208014, 0, 64 * 1024, 16, 0) },
{ "m25pe16", INFO(0x208015, 0, 64 * 1024, 32, SECT_4K) },
{ "m25px16", INFO(0x207115, 0, 64 * 1024, 32, SECT_4K) },
{ "m25px32", INFO(0x207116, 0, 64 * 1024, 64, SECT_4K) },
{ "m25px32-s0", INFO(0x207316, 0, 64 * 1024, 64, SECT_4K) },
{ "m25px32-s1", INFO(0x206316, 0, 64 * 1024, 64, SECT_4K) },
{ "m25px64", INFO(0x207117, 0, 64 * 1024, 128, 0) },
{ "m25px80", INFO(0x207114, 0, 64 * 1024, 16, 0) },
/* Winbond -- w25x "blocks" are 64K, "sectors" are 4KiB */
{ "w25x05", INFO(0xef3010, 0, 64 * 1024, 1, SECT_4K) },
{ "w25x10", INFO(0xef3011, 0, 64 * 1024, 2, SECT_4K) },
{ "w25x20", INFO(0xef3012, 0, 64 * 1024, 4, SECT_4K) },
{ "w25x40", INFO(0xef3013, 0, 64 * 1024, 8, SECT_4K) },
{ "w25x80", INFO(0xef3014, 0, 64 * 1024, 16, SECT_4K) },
{ "w25x16", INFO(0xef3015, 0, 64 * 1024, 32, SECT_4K) },
{ "w25x32", INFO(0xef3016, 0, 64 * 1024, 64, SECT_4K) },
{ "w25q32", INFO(0xef4016, 0, 64 * 1024, 64, SECT_4K) },
{
"w25q32dw", INFO(0xef6016, 0, 64 * 1024, 64,
SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB)
},
{ "w25x64", INFO(0xef3017, 0, 64 * 1024, 128, SECT_4K) },
{ "w25q64", INFO(0xef4017, 0, 64 * 1024, 128, SECT_4K |SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
{
"w25q64dw", INFO(0xef6017, 0, 64 * 1024, 128,
SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB)
},
{
"w25q128fw", INFO(0xef6018, 0, 64 * 1024, 256,
SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB)
},
{ "w25q80", INFO(0xef5014, 0, 64 * 1024, 16, SECT_4K) },
{ "w25q80bl", INFO(0xef4014, 0, 64 * 1024, 16, SECT_4K) },
{ "w25q128", INFO(0xef4018, 0, 64 * 1024, 256, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
{ "w25q256", INFO(0xef4019, 0, 64 * 1024, 512, SECT_4K) },
{ "w25m512jv", _INFO(0xef7119, 0, 64 * 1024, 1024, 2,
SECT_4K | SPI_NOR_QUAD_READ | SPI_NOR_DUAL_READ) },
{"w25q128jv", INFO(0xef7018, 0, 64 * 1024, 256, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB)},
/* puya */
{ "py25q128ha", INFO(0x852018, 0, 64 * 1024, 256, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
{ "p25q128h", INFO(0x856018, 0, 64 * 1024, 256, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
{ "p25q64", INFO(0x856017, 0, 64 * 1024, 128, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
{ "p25q32", INFO(0x856016, 0, 64 * 1024, 64, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
{ "py25q256hb", INFO(0x852019, 0x0, 64 * 1024, 512, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ | SPI_NOR_4B_OPCODES) },
/* ZB */
{ "z25vq64as", INFO(0x5e4017, 0, 64 * 1024, 128, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
{ "z25vq128as", INFO(0x5e4018, 0, 64 * 1024, 256, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
/* FM */
{ "fm25q128a", INFO(0xa14018, 0, 64 * 1024, 256, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
{ "fm25q64", INFO(0xa14017, 0, 64 * 1024, 128, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
/* Catalyst / On Semiconductor -- non-JEDEC */
{ "cat25c11", CAT25_INFO( 16, 8, 16, 1, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
{ "cat25c03", CAT25_INFO( 32, 8, 16, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
{ "cat25c09", CAT25_INFO( 128, 8, 32, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
{ "cat25c17", CAT25_INFO( 256, 8, 32, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
{ "cat25128", CAT25_INFO(2048, 8, 64, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
/* BOYA*/
{ "BY25Q128", INFO(0x684018, 0, 64 * 1024, 256, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
{ "BY25Q256FS", INFO(0x684919, 0, 64 * 1024, 512, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ | SPI_NOR_4B_OPCODES) },
/* XT */
{ "xt25p1288", INFO(0x0b4018, 0, 64 * 1024, 256, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
/* Adesto */
{ "at25sf128a", INFO(0x1f8901, 0, 64 * 1024, 256, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
/* XMC (Wuhan Xinxin Semiconductor Manufacturing Corp.) */
{ "XM25QH64A", INFO(0x207017, 0, 64 * 1024, 128, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
{ "XM25QH64C", INFO(0x204017, 0, 64 * 1024, 128, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
{ "XM25QH128A", INFO(0x207018, 0, 64 * 1024, 256, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
{ "XM25QH256B", INFO(0x206019, 0, 64 * 1024, 512, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
{ "XM25QH128C", INFO(0x204018, 0, 64 * 1024, 256, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
/*GFX*/
{ "GM25Q64A", INFO(0x1c4017, 0, 64 * 1024, 128, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
{ "GM25Q128A", INFO(0x1c4018, 0, 64 * 1024, 256, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
{ },
};
static const struct flash_info *spi_nor_read_id(struct spi_nor *nor)
{
int tmp;
u8 id[SPI_NOR_MAX_ID_LEN];
const struct flash_info *info;
tmp = nor->read_reg(nor, SPINOR_OP_RDID, id, SPI_NOR_MAX_ID_LEN);
if (tmp < 0) {
dev_dbg(nor->dev, "error %d reading JEDEC ID\n", tmp);
return ERR_PTR(tmp);
}
for (tmp = 0; tmp < ARRAY_SIZE(spi_nor_ids) - 1; tmp++) {
info = &spi_nor_ids[tmp];
if (info->id_len) {
if (!memcmp(info->id, id, info->id_len))
return &spi_nor_ids[tmp];
}
}
dev_err(nor->dev, "unrecognized JEDEC id bytes: %02x, %02x, %02x\n",
id[0], id[1], id[2]);
return ERR_PTR(-ENODEV);
}
static int spi_nor_read_uid(struct mtd_info *mtd, u_char *rx_buf)
{
struct spi_nor *nor = mtd_to_spi_nor(mtd);
int ret = 0;
size_t rx_len = SPI_NOR_MAX_UID_LEN;
loff_t addr_from = 0;
u8 uid_buf[SPI_NOR_MAX_UID_LEN] = {0};
u8 tmp_read_opcode = nor->read_opcode;
u8 tmp_read_dummy = nor->read_dummy;
u8 tmp_flash_read = nor->flash_read;
u8 tmp_addr_width = nor->addr_width;
ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_READ);
if (ret)
return ret;
nor->read_opcode = SPINOR_OP_READ_UID;
nor->read_dummy = UID_READ_DUMMY_BITS;
nor->flash_read = SPI_NOR_NORMAL; //decide read in SINGLE/DUAL/QUAD mode
nor->addr_width = UID_ADDR_WIDTH;
ret = nor->read(nor, addr_from, rx_len, uid_buf);
memcpy(rx_buf, uid_buf, rx_len);
nor->read_opcode = tmp_read_opcode;
nor->read_dummy = tmp_read_dummy;
nor->flash_read = tmp_flash_read;
nor->addr_width = tmp_addr_width;
if (ret < 0) {
dev_err(nor->dev, "error %d reading UID\n", ret);
goto read_err;
}
read_err:
spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_READ);
return ret < 0 ? ret : 0;
}
static int spi_nor_read(struct mtd_info *mtd, loff_t from, size_t len,
size_t *retlen, u_char *buf)
{
struct spi_nor *nor = mtd_to_spi_nor(mtd);
u32 bank_size = 0, bank_offset;
u32 bid = 0;
int ret;
dev_dbg(nor->dev, "from 0x%08x, len %zd\n", (u32)from, len);
ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_READ);
if (ret)
return ret;
if (nor->n_banks && nor->flash_select_bank)
bank_size = (u32)div_u64(mtd->size, nor->n_banks);
else
bank_size = mtd->size;
while (len) {
size_t rlen;
bank_offset = from & (bank_size - 1);
bid = (u32)div_u64(from, bank_size);
if (nor->flash_select_bank)
nor->flash_select_bank(nor, from, bid);
if ((len + bank_offset) > bank_size)
rlen = bank_size - bank_offset;
else
rlen = len;
ret = nor->read(nor, bank_offset, rlen, buf);
if (ret == 0) {
/* We shouldn't see 0-length reads */
ret = -EIO;
goto read_err;
}
if (ret < 0)
goto read_err;
WARN_ON(ret > len);
*retlen += ret;
from += ret;
buf += ret;
len -= ret;
}
ret = 0;
read_err:
spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_READ);
return ret;
}
static int sst_write(struct mtd_info *mtd, loff_t to, size_t len,
size_t *retlen, const u_char *buf)
{
struct spi_nor *nor = mtd_to_spi_nor(mtd);
size_t actual;
int ret;
dev_dbg(nor->dev, "to 0x%08x, len %zd\n", (u32)to, len);
ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_WRITE);
if (ret)
return ret;
write_enable(nor);
nor->sst_write_second = false;
actual = to % 2;
/* Start write from odd address. */
if (actual) {
nor->program_opcode = SPINOR_OP_BP;
/* write one byte. */
ret = nor->write(nor, to, 1, buf);
if (ret < 0)
goto sst_write_err;
WARN(ret != 1, "While writing 1 byte written %i bytes\n",
(int)ret);
ret = spi_nor_wait_till_ready(nor);
if (ret)
goto sst_write_err;
}
to += actual;
/* Write out most of the data here. */
for (; actual < len - 1; actual += 2) {
nor->program_opcode = SPINOR_OP_AAI_WP;
/* write two bytes. */
ret = nor->write(nor, to, 2, buf + actual);
if (ret < 0)
goto sst_write_err;
WARN(ret != 2, "While writing 2 bytes written %i bytes\n",
(int)ret);
ret = spi_nor_wait_till_ready(nor);
if (ret)
goto sst_write_err;
to += 2;
nor->sst_write_second = true;
}
nor->sst_write_second = false;
write_disable(nor);
ret = spi_nor_wait_till_ready(nor);
if (ret)
goto sst_write_err;
/* Write out trailing byte if it exists. */
if (actual != len) {
write_enable(nor);
nor->program_opcode = SPINOR_OP_BP;
ret = nor->write(nor, to, 1, buf + actual);
if (ret < 0)
goto sst_write_err;
WARN(ret != 1, "While writing 1 byte written %i bytes\n",
(int)ret);
ret = spi_nor_wait_till_ready(nor);
if (ret)
goto sst_write_err;
write_disable(nor);
actual += 1;
}
sst_write_err:
*retlen += actual;
spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_WRITE);
return ret;
}
/*
* Write an address range to the nor chip. Data must be written in
* FLASH_PAGESIZE chunks. The address range may be any size provided
* it is within the physical boundaries.
*/
static int spi_nor_write(struct mtd_info *mtd, loff_t to, size_t len,
size_t *retlen, const u_char *buf)
{
struct spi_nor *nor = mtd_to_spi_nor(mtd);
size_t page_offset, page_remain;
int ret;
u32 bid;
u32 bank_size, bank_offset;
dev_dbg(nor->dev, "to 0x%08x, len %zd\n", (u32)to, len);
ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_WRITE);
if (ret)
return ret;
if (nor->n_banks && nor->flash_select_bank)
bank_size = (u32)div_u64(mtd->size, nor->n_banks);
else
bank_size = mtd->size;
while (len) {
ssize_t written;
size_t wlen = 0;
bank_offset = to & (bank_size - 1);
bid = (u32)div_u64(to, bank_size);
if (nor->flash_select_bank)
nor->flash_select_bank(nor, to, bid);
if ((len + bank_offset) > bank_size)
wlen = bank_size - bank_offset;
else
wlen = len;
page_offset = to & (nor->page_size - 1);
/* the size of data remaining on the first page */
page_remain = min_t(size_t,
nor->page_size - page_offset, wlen);
write_enable(nor);
written = nor->write(nor, to, page_remain, buf);
if (written < 0)
goto write_err;
ret = spi_nor_wait_till_ready(nor);
if (ret)
goto write_err;
*retlen += written;
to += written;
buf += written;
len -= written;
if (written != page_remain) {
dev_err(nor->dev,
"While writing %zu bytes written %zd bytes\n",
page_remain, written);
ret = -EIO;
goto write_err;
}
}
write_err:
spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_WRITE);
return ret;
}
static int spi_nor_has_lock_write(struct mtd_info *mtd, loff_t to, size_t len,
size_t *retlen, const u_char *buf)
{
struct spi_nor *nor = mtd_to_spi_nor(mtd);
ssize_t ret;
if (mtd->_unlock(mtd, to, len))
dev_err(nor->dev, "write unlock err\n");
/* sst nor chips use AAI word program */
if (nor->info->flags & SST_WRITE)
ret = sst_write(mtd, to, len, retlen, buf);
else
ret = spi_nor_write(mtd, to, len, retlen, buf);
mtd->_lock(mtd, 0, mtd->size);
return ret;
}
static int macronix_quad_enable(struct spi_nor *nor)
{
int ret, val;
val = read_sr(nor);
if (val < 0)
return val;
write_enable(nor);
write_sr(nor, val | SR_QUAD_EN_MX);
if (spi_nor_wait_till_ready(nor))
return 1;
ret = read_sr(nor);
if (!(ret > 0 && (ret & SR_QUAD_EN_MX))) {
dev_err(nor->dev, "Macronix Quad bit not set\n");
return -EINVAL;
}
return 0;
}
static int spansion_quad_enable(struct spi_nor *nor)
{
u8 sr_cr[2];
int sr, cr;
/* Keep the current value of the Status Register. */
sr = read_sr(nor);
if (sr < 0) {
dev_dbg(nor->dev, "error while reading status register\n");
return -EINVAL;
}
cr = read_cr(nor);
if (cr < 0) {
dev_dbg(nor->dev, "error while reading config register\n");
return -EINVAL;
}
sr_cr[0] = sr;
sr_cr[1] = cr | CR_QUAD_EN_SPAN;
return write_sr_cr(nor, sr_cr);
}
static int write_sr_gd(struct spi_nor *nor, u8 val)
{
nor->cmd_buf[0] = val;
return nor->write_reg(nor, SPINOR_OP_WRSR2, nor->cmd_buf, 1);
}
static int gd_read_cr_quad_enable(struct spi_nor *nor)
{
int ret, val;
val = read_cr(nor);
if (val < 0)
return val;
if (val & CR_QUAD_EN_GD)
return 0;
write_enable(nor);
write_sr_gd(nor, val | CR_QUAD_EN_GD);
ret = spi_nor_wait_till_ready(nor);
if (ret)
return ret;
ret = read_cr(nor);
if (!(ret > 0 && (ret & CR_QUAD_EN_GD))) {
dev_err(nor->dev, "Gd Quad bit not set\n");
return -EINVAL;
}
return 0;
}
static int read_cr_EON(struct spi_nor *nor)
{
int ret;
u8 val;
ret = nor->read_reg(nor, SPINOR_OP_RDCR_EON, &val, 1);
if (ret < 0) {
dev_dbg(nor->dev, "error %d reading CR\n", ret);
return ret;
}
return val;
}
static int Eon_quad_enable(struct spi_nor *nor)
{
int ret, val;
if ((JEDEC_ID(nor->info) == 0x7018) || (JEDEC_ID(nor->info) == 0x7017)) {
/*
* EN25QH128A no QE bit,you should enter otp mode,
* than you can see WXDIS bit on status register.
* Set it and enable quad mode.
*/
enter_otp(nor);
val = read_sr(nor);
if (val < 0) {
exit_otp(nor);
return val;
}
if (val & SR_OTP_WXDIS_EN_EON) {
exit_otp(nor);
return 0;
}
write_enable(nor);
write_sr(nor, val | SR_OTP_WXDIS_EN_EON);
ret = spi_nor_wait_till_ready(nor);
if (ret) {
exit_otp(nor);
return ret;
}
ret = read_sr(nor);
if (!(ret > 0 && (ret & SR_OTP_WXDIS_EN_EON))) {
exit_otp(nor);
dev_err(nor->dev, "EON WXDIS bit not set\n");
return -EINVAL;
}
exit_otp(nor);
} else {
/*
* other ESMT nor still enable quad mode by setting
* QE bit,use 31h to write control register.
*
*/
val = read_cr_EON(nor);
if (val < 0)
return val;
if (val & CR_QUAD_EN_EON)
return 0;
write_enable(nor);
write_cr(nor, val | CR_QUAD_EN_EON);
ret = spi_nor_wait_till_ready(nor);
if (ret)
return ret;
ret = read_cr_EON(nor);
if (!(ret > 0 && (ret & CR_QUAD_EN_EON))) {
dev_err(nor->dev, "EON Quad bit not set\n");
return -EINVAL;
}
}
return 0;
}
static int set_quad_mode(struct spi_nor *nor, const struct flash_info *info)
{
int status;
switch (JEDEC_MFR(info)) {
case SNOR_MFR_MACRONIX:
case SNOR_MFR_XMC:
//SNOR_MFR_MICRON
if (info->id[1] >> 4 == 'b') {////because XMC and MICRON id[0] equal
return 0;
}
status = macronix_quad_enable(nor);
if (status) {
dev_err(nor->dev, "Macronix quad-read not enabled\n");
return -EINVAL;
}
return status;
case SNOR_MFR_GIGADEVICE:
case SNOR_MFR_ADESTO:
case SNOR_MFR_BOYA:
case SNOR_MFR_PUYA:
status = gd_read_cr_quad_enable(nor);
if (status) {
dev_err(nor->dev, "GIGADEVICE quad-read not enabled\n");
return -EINVAL;
}
return status;
case SNOR_MFR_SPANSION:
case SNOR_MFR_WINBOND:
case SNOR_MFR_XTX:
status = spansion_quad_enable(nor);
if (status) {
dev_err(nor->dev, "Spansion quad-read not enabled\n");
return -EINVAL;
}
return status;
case SNOR_MFR_EON:
switch (JEDEC_ID(info)) {
case GM_64A_ID:
case GM_128A_ID:
status = gd_read_cr_quad_enable(nor);
if (status) {
dev_err(nor->dev, "gfx quad-read not enabled\n");
return -EINVAL;
}
return status;
default:
status = Eon_quad_enable(nor);
if (status) {
dev_err(nor->dev, "eon quad-read not enabled\n");
return -EINVAL;
}
return status;
}
default:
dev_err(nor->dev, "SF: Need set QEB func for %02x flash\n", JEDEC_MFR(info));
return 0;
}
}
static int winb_select_bank(struct spi_nor *nor, loff_t ofs, u32 id)
{
int ret;
nor->cmd_buf[0] = id;
ret = nor->write_reg(nor, SPINOR_OP_DIESEL, nor->cmd_buf, 1);
return ret;
}
static int spi_nor_check(struct spi_nor *nor)
{
if (!nor->dev || !nor->read || !nor->write ||
!nor->read_reg || !nor->write_reg) {
pr_err("spi-nor: please fill all the necessary fields!\n");
return -EINVAL;
}
return 0;
}
static int sunxi_lock_init(struct spi_nor *nor)
{
struct mtd_info *mtd = &nor->mtd;
const struct flash_info *info = nor->info;
/* NOR protection support for STmicro/Micron chips and similar */
if (JEDEC_MFR(info) == SNOR_MFR_MICRON ||
info->flags & SPI_NOR_HAS_LOCK) {
sunxi_individual_lock_init(nor);
if (info->flags & SPI_NOR_HAS_LOCK_HANDLE)
nor->flags |= SNOR_F_HAS_LOCK_HANDLE;
if (nor->flags & SNOR_F_INDIVIDUAL_LOCK) {
nor->flash_lock = sunxi_individual_lock;
nor->flash_unlock = sunxi_individual_unlock;
nor->flash_is_locked = sunxi_individual_is_lock;
} else {
if (JEDEC_MFR(info) == SNOR_MFR_MICRON ||
JEDEC_MFR(info) == SNOR_MFR_SST) {
nor->flash_lock = stm_lock;
nor->flash_unlock = stm_unlock;
nor->flash_is_locked = stm_is_locked;
} else {
nor->flash_lock = sunxi_lock;
nor->flash_unlock = sunxi_unlock;
nor->flash_is_locked = sunxi_is_locked;
}
}
} else {
/*
* If the lock is not used and the Flash is locked,
* it will be unlocked globally
*/
if (sunxi_individual_lock_is_enable(nor))
sunxi_individual_unlock_global(nor);
if (JEDEC_MFR(info) == SNOR_MFR_MICRON ||
JEDEC_MFR(info) == SNOR_MFR_SST)
stm_unlock(nor, 0, mtd->size);
else
sunxi_unlock(nor, 0, mtd->size);
}
if (nor->flash_lock && nor->flash_unlock && nor->flash_is_locked) {
mtd->_lock = spi_nor_lock;
mtd->_unlock = spi_nor_unlock;
mtd->_is_locked = spi_nor_is_locked;
/* If the lock handle function is enabled, lock the flash */
if (nor->flags & SNOR_F_HAS_LOCK_HANDLE) {
pr_warn("enable lock handle function\n");
mtd->_erase = spi_nor_has_lock_erase;
mtd->_write = spi_nor_has_lock_write;
mtd->_lock(mtd, 0, mtd->size);
}
}
return 0;
}
static int spi_nor_init(struct spi_nor *nor)
{
const struct flash_info *info = nor->info;
int err;
if (nor->flash_read == SPI_NOR_QUAD && info->flags & SPI_NOR_QUAD_READ) {
err = set_quad_mode(nor, info);
if (err) {
dev_err(nor->dev, "quad mode not supported\n");
return err;
}
}
if ((nor->addr_width == 4) &&
(JEDEC_MFR(nor->info) != SNOR_MFR_SPANSION) &&
!(nor->flags & SNOR_F_4B_OPCODES)) {
/*
* If the RESET# pin isn't hooked up properly, or the system
* otherwise doesn't perform a reset command in the boot
* sequence, it's impossible to 100% protect against unexpected
* reboots (e.g., crashes). Warn the user (or hopefully, system
* designer) that this is bad.
*/
set_4byte(nor, nor->info, 1);
}
return 0;
}
/* mtd resume handler */
static void spi_nor_resume(struct mtd_info *mtd)
{
struct spi_nor *nor = mtd_to_spi_nor(mtd);
int ret;
/* re-initialize the nor chip */
ret = spi_nor_init(nor);
if (ret)
dev_err(nor->dev, "resume() failed\n");
}
void spi_nor_restore(struct spi_nor *nor)
{
/* restore the addressing mode */
if ((nor->addr_width == 4) &&
(JEDEC_MFR(nor->info) != SNOR_MFR_SPANSION) &&
!(nor->flags & SNOR_F_4B_OPCODES))
set_4byte(nor, nor->info, 0);
/*
* Send Reset Enable (66h) and Reset Device (99h)
*/
nor->write_reg(nor, SPINOR_OP_RESTEN, NULL, 0);
nor->write_reg(nor, SPINOR_OP_RESET, NULL, 0);
}
EXPORT_SYMBOL_GPL(spi_nor_restore);
static int spi_nor_suspend(struct mtd_info *mtd)
{
struct spi_nor *nor = mtd_to_spi_nor(mtd);
/* re-initialize the nor chip */
spi_nor_restore(nor);
return 0;
}
static ssize_t spinordbg_param_read(struct file *file, char __user *buf,
size_t count, loff_t *ppos)
{
int len = strlen(spinordbg_priv.param);
if (len) {
if (*ppos >= len)
return 0;
if (count >= len)
count = len;
if (count > (len - *ppos))
count = (len - *ppos);
if (copy_to_user
((void __user *)buf, (const void *)spinordbg_priv.param,
(unsigned long)len)) {
pr_warn("copy_to_user fail\n");
return 0;
}
*ppos += count;
} else
count = 0;
return count;
}
static ssize_t spinordbg_param_write(struct file *file, const char __user *buf,
size_t count, loff_t *ppos)
{
if (copy_from_user(spinordbg_priv.param, buf, count)) {
pr_warn("copy_from_user fail\n");
return 0;
}
return count;
}
static ssize_t spinordbg_status_read(struct file *file, char __user *buf,
size_t count, loff_t *ppos)
{
#ifndef CONFIG_SPIF_SUNXI
struct spi_nor *nor = get_spinor();
#else
struct spi_nor *nor = get_spinor_static();
#endif
char tmpstatus[80];
u32 value;
int len = 0;
if (!strncmp(spinordbg_priv.param, "freq", 4)) {
of_property_read_u32(nor->mtd.dev.of_node, "spi-max-frequency", &value);
sprintf(tmpstatus, "%u", value);
strcpy(spinordbg_priv.status, tmpstatus);
} else if (!strncmp(spinordbg_priv.param, "readmode", 8)) {
switch (nor->read_opcode) {
case SPINOR_OP_READ_1_1_4:
strcpy(spinordbg_priv.status, "QUAD");
break;
case SPINOR_OP_READ_1_1_2:
strcpy(spinordbg_priv.status, "DUAL");
break;
case SPINOR_OP_READ_FAST:
strcpy(spinordbg_priv.status, "FAST");
break;
case SPINOR_OP_READ:
strcpy(spinordbg_priv.status, "NORMAL");
break;
default:
strcpy(spinordbg_priv.status, "NONE");
}
} else if (!strncmp(spinordbg_priv.param, "size", 4)) {
sprintf(tmpstatus, "%llu", nor->mtd.size);
strcpy(spinordbg_priv.status, tmpstatus);
} else if (!strncmp(spinordbg_priv.param, "name", 4)) {
strcpy(spinordbg_priv.status, nor->info->name);
} else if (!strncmp(spinordbg_priv.param, "erasesize", 9)) {
sprintf(tmpstatus, "%d", nor->mtd.erasesize);
strcpy(spinordbg_priv.status, tmpstatus);
} else {
strcpy(spinordbg_priv.status, "please set param before cat status\n \
freq ----return spi frequency\n \
readmode ----return QUAD/DUAL/FAST/NORMAL\n \
size ----return chip size\n \
name ----return the matched flash ID\n \
erasesize ----return erase size\n");
}
len = strlen(spinordbg_priv.status);
spinordbg_priv.status[len] = 0x0A;
spinordbg_priv.status[len + 1] = 0x0;
len = strlen(spinordbg_priv.status);
if (len) {
if (*ppos >= len)
return 0;
if (count >= len)
count = len;
if (count > (len - *ppos))
count = (len - *ppos);
if (copy_to_user
((void __user *)buf, (const void *)spinordbg_priv.status,
(unsigned long)len)) {
pr_warn("copy_to_user fail\n");
return 0;
}
*ppos += count;
} else
count = 0;
return count;
}
static ssize_t spinordbg_status_write(struct file *file, const char __user *buf,
size_t count, loff_t *ppos)
{
return count;
}
static const struct file_operations param_ops = {
.write = spinordbg_param_write,
.read = spinordbg_param_read,
};
static const struct file_operations status_ops = {
.write = spinordbg_status_write,
.read = spinordbg_status_read,
};
int spinor_debug_init(void)
{
struct dentry *my_spinordbg_root;
my_spinordbg_root = debugfs_create_dir("spinordbg", NULL);
if (!debugfs_create_file
("status", 0644, my_spinordbg_root, NULL, &status_ops))
goto Fail;
if (!debugfs_create_file
("param", 0644, my_spinordbg_root, NULL, &param_ops))
goto Fail;
return 0;
Fail:
debugfs_remove_recursive(my_spinordbg_root);
my_spinordbg_root = NULL;
return -ENOENT;
}
#ifdef CONFIG_SPI_FLASH_SR
int security_regiser_is_locked(struct mtd_info *mtd, u8 sr_num)
{
u8 val, mask;
struct spi_nor *nor = mtd_to_spi_nor(mtd);
if (sr_num <= 0 || sr_num >= 4) {
dev_dbg(nor->dev, "%s, error security register num %d\n", __func__, sr_num);
return -1;
}
val = read_sr2(nor);
mask = 1 << (LB_OFS + sr_num);
return val & mask;
}
int security_register_lock(struct mtd_info *mtd, u8 sr_num)
{
u8 val, mask;
struct spi_nor *nor = mtd_to_spi_nor(mtd);
if (sr_num <= 0 || sr_num >= 4) {
dev_dbg(nor->dev, "%s, error security register num %d\n", __func__, sr_num);
return -1;
}
val = read_sr2(nor);
mask = 1 << (LB_OFS + sr_num);
val |= mask;
write_sr2(nor, val);
return 0;
}
static int security_regiser_erase(struct mtd_info *mtd, loff_t addr)
{
u8 program_opcode;
u8 flash_read;
int ret;
struct spi_nor *nor = mtd_to_spi_nor(mtd);
program_opcode = nor->program_opcode;
flash_read = nor->flash_read;
nor->program_opcode = SR_OP_ERASE;
nor->flash_read = 0;
write_enable(nor);
ret = nor->write(nor, addr, 0, NULL);
ret = spi_nor_wait_till_ready(nor);
nor->program_opcode = program_opcode;
nor->flash_read = flash_read;
return ret;
}
int security_regiser_read_data(struct mtd_info *mtd,
loff_t addr, loff_t len, u_char *buf)
{
u8 read_opcode;
u8 read_dummy;
u8 addr_width;
u8 flash_read;
int ret;
int num;
struct spi_nor *nor = mtd_to_spi_nor(mtd);
read_opcode = nor->read_opcode;
read_dummy = nor->read_dummy;
addr_width = nor->addr_width;
flash_read = nor->flash_read;
nor->read_opcode = SR_OP_READ;
nor->flash_read = 0;
nor->read_dummy = 8;
nor->addr_width = 3;
ret = spi_nor_read(mtd, addr, len, &num, buf);
nor->read_opcode = read_opcode;
nor->flash_read = flash_read;
nor->read_dummy = read_dummy;
nor->addr_width = addr_width;
return ret;
}
int security_regiser_write_data(struct mtd_info *mtd,
loff_t addr, loff_t len, u_char *buf)
{
u8 program_opcode;
u8 addr_width;
u8 flash_read;
int ret;
int num;
struct spi_nor *nor = mtd_to_spi_nor(mtd);
ret = security_regiser_erase(mtd, addr);
if (ret)
return ret;
program_opcode = nor->program_opcode;
addr_width = nor->addr_width;
flash_read = nor->flash_read;
nor->program_opcode = SR_OP_PROGRAM;
nor->addr_width = 3;
nor->flash_read = 0;
ret = spi_nor_write(mtd, addr, len, &num, buf);
nor->program_opcode = program_opcode;
nor->addr_width = addr_width;
nor->flash_read = flash_read;
return ret;
}
#endif
int spi_nor_scan(struct spi_nor *nor, const char *name, enum read_mode mode)
{
const struct flash_info *info = NULL;
struct device *dev = nor->dev;
struct mtd_info *mtd = &nor->mtd;
struct device_node *np = spi_nor_get_flash_node(nor);
int ret;
int i;
spinordbg = nor;
ret = spi_nor_check(nor);
if (ret)
return ret;
if (name)
info = spi_nor_match_id(name);
/* Try to auto-detect if chip name wasn't specified or not found */
if (!info)
info = spi_nor_read_id(nor);
if (IS_ERR_OR_NULL(info))
return -ENOENT;
/*
* If caller has specified name of flash model that can normally be
* detected using JEDEC, let's verify it.
*/
if (name && info->id_len) {
const struct flash_info *jinfo;
jinfo = spi_nor_read_id(nor);
if (IS_ERR(jinfo)) {
return PTR_ERR(jinfo);
} else if (jinfo != info) {
/*
* JEDEC knows better, so overwrite platform ID. We
* can't trust partitions any longer, but we'll let
* mtd apply them anyway, since some partitions may be
* marked read-only, and we don't want to lose that
* information, even if it's not 100% accurate.
*/
dev_warn(dev, "found %s, expected %s\n",
jinfo->name, info->name);
info = jinfo;
}
}
mutex_init(&nor->lock);
/*
* We need to check the device if have multi-chip-die capabilities.
* There is some devices can switch the chip die by command,
* such as WINBOND's devices.
* But, other devices also can switch the bank by gpio, such as Micross's
* MYXN25Q512A, it can control the S# pin to select die.
*
* TODO: implement the gpio contorl and die mapping table.
*/
if (info->n_banks) {
nor->n_banks = info->n_banks;
if (JEDEC_MFR(info) == SNOR_MFR_WINBOND) {
dev_dbg(dev, "manufacturer is winbond\n");
nor->flash_select_bank = winb_select_bank;
}
} else
nor->n_banks = 0;
if (info->flags & SPI_NOR_4B_OPCODES)
nor->flags |= SNOR_F_4B_OPCODES;
if (!mtd->name)
mtd->name = dev_name(dev);
mtd->priv = nor;
mtd->type = MTD_NORFLASH;
mtd->writesize = 1;
mtd->flags = MTD_CAP_NORFLASH;
mtd->size = info->sector_size * info->n_sectors;
mtd->_erase = spi_nor_erase;
mtd->_erase_4k = spi_nor_erase_4k;
mtd->_read = spi_nor_read;
mtd->_resume = spi_nor_resume;
mtd->_suspend = spi_nor_suspend;
mtd->_read_uid = spi_nor_read_uid;
#ifdef CONFIG_SPI_FLASH_SR
mtd->_security_regiser_is_locked = security_regiser_is_locked;
mtd->_security_register_lock = security_register_lock;
mtd->_security_regiser_read_data = security_regiser_read_data;
mtd->_security_regiser_write_data = security_regiser_write_data;
#endif
/* sst nor chips use AAI word program */
if (info->flags & SST_WRITE)
mtd->_write = sst_write;
else
mtd->_write = spi_nor_write;
if (info->flags & USE_FSR)
nor->flags |= SNOR_F_USE_FSR;
if (info->flags & SPI_NOR_HAS_TB)
nor->flags |= SNOR_F_HAS_SR_TB;
#ifdef CONFIG_MTD_SPI_NOR_USE_4K_SECTORS
/* prefer "small sector" erase if possible */
if (info->flags & SECT_4K) {
nor->erase_opcode = SPINOR_OP_BE_4K;
mtd->erasesize = 4096;
} else if (info->flags & SECT_4K_PMC) {
nor->erase_opcode = SPINOR_OP_BE_4K_PMC;
mtd->erasesize = 4096;
} else
#endif
{
if (info->flags & SPI_NOR_ERASE_32K) {
nor->erase_opcode = SPINOR_OP_BE_32K;
mtd->erasesize = 32 * 1024;
} else {
nor->erase_opcode = SPINOR_OP_SE;
mtd->erasesize = info->sector_size;
}
}
if (info->flags & SPI_NOR_NO_ERASE)
mtd->flags |= MTD_NO_ERASE;
mtd->dev.parent = dev;
nor->page_size = info->page_size;
mtd->writebufsize = nor->page_size;
if (np) {
/* If we were instantiated by DT, use it */
if (of_property_read_bool(np, "m25p,fast-read"))
nor->flash_read = SPI_NOR_FAST;
else
nor->flash_read = SPI_NOR_NORMAL;
} else {
/* If we weren't instantiated by DT, default to fast-read */
nor->flash_read = SPI_NOR_FAST;
}
/* Some devices cannot do fast-read, no matter what DT tells us */
if (info->flags & SPI_NOR_NO_FR)
nor->flash_read = SPI_NOR_NORMAL;
/* Quad/Dual-read mode takes precedence over fast/normal */
if (mode == SPI_NOR_QUAD && info->flags & SPI_NOR_QUAD_READ) {
nor->flash_read = SPI_NOR_QUAD;
} else if (mode == SPI_NOR_DUAL && info->flags & SPI_NOR_DUAL_READ) {
nor->flash_read = SPI_NOR_DUAL;
}
nor->read_proto = SNOR_PROTO_1_1_1;
nor->write_proto = SNOR_PROTO_1_1_1;
/* Default commands */
switch (nor->flash_read) {
case SPI_NOR_QUAD:
nor->read_opcode = SPINOR_OP_READ_1_1_4;
nor->read_proto = nor->write_proto = SNOR_PROTO_1_1_4;
break;
case SPI_NOR_DUAL:
nor->read_opcode = SPINOR_OP_READ_1_1_2;
nor->read_proto = SNOR_PROTO_1_1_2;
break;
case SPI_NOR_FAST:
nor->read_opcode = SPINOR_OP_READ_FAST;
break;
case SPI_NOR_NORMAL:
nor->read_opcode = SPINOR_OP_READ;
break;
default:
dev_err(dev, "No Read opcode defined\n");
return -EINVAL;
}
nor->program_opcode = SPINOR_OP_PP;
if (info->addr_width)
nor->addr_width = info->addr_width;
else if (mtd->size > 0x1000000) {
/* enable 4-byte addressing if the device exceeds 16MiB */
nor->addr_width = 4;
if ((JEDEC_MFR(info) == SNOR_MFR_SPANSION) ||
(JEDEC_MFR(info) == SNOR_MFR_GIGADEVICE) ||
(nor->flags & SNOR_F_4B_OPCODES)) {
/* Dedicated 4-byte command set */
switch (nor->flash_read) {
case SPI_NOR_OCTAL:
nor->read_opcode = SPINOR_OP_READ4_1_1_8;
break;
case SPI_NOR_QUAD:
nor->read_opcode = SPINOR_OP_READ4_1_1_4;
break;
case SPI_NOR_DUAL:
nor->read_opcode = SPINOR_OP_READ4_1_1_2;
break;
case SPI_NOR_FAST:
nor->read_opcode = SPINOR_OP_READ4_FAST;
break;
case SPI_NOR_NORMAL:
nor->read_opcode = SPINOR_OP_READ4;
break;
}
nor->program_opcode = SPINOR_OP_PP_4B;
/* No small sector erase for 4-byte command set */
if (info->flags & SPI_NOR_ERASE_32K) {
nor->erase_opcode = SPINOR_OP_BE_32K_4B;
mtd->erasesize = 32 * 1024;
} else {
nor->erase_opcode = SPINOR_OP_SE_4B;
mtd->erasesize = info->sector_size;
}
}
} else {
nor->addr_width = 3;
}
if (nor->addr_width > SPI_NOR_MAX_ADDR_WIDTH) {
dev_err(dev, "address width is too large: %u\n",
nor->addr_width);
return -EINVAL;
}
nor->read_dummy = spi_nor_read_dummy_cycles(nor);
/* Send all the required SPI flash commands to initialize device */
nor->info = info;
ret = spi_nor_init(nor);
if (ret)
return ret;
sunxi_lock_init(nor);
dev_info(dev, "%s (%lld Kbytes)\n", info->name,
(long long)mtd->size >> 10);
dev_dbg(dev,
"mtd .name = %s, .size = 0x%llx (%lldMiB), "
".erasesize = 0x%.8x (%uKiB) .numeraseregions = %d, "
"probe succeed (Version %s)\n",
mtd->name, (long long)mtd->size, (long long)(mtd->size >> 20),
mtd->erasesize, mtd->erasesize / 1024, mtd->numeraseregions,
SUNXI_NOR_MODULE_VERSION);
if (mtd->numeraseregions)
for (i = 0; i < mtd->numeraseregions; i++)
dev_dbg(dev,
"mtd.eraseregions[%d] = { .offset = 0x%llx, "
".erasesize = 0x%.8x (%uKiB), "
".numblocks = %d }\n",
i, (long long)mtd->eraseregions[i].offset,
mtd->eraseregions[i].erasesize,
mtd->eraseregions[i].erasesize / 1024,
mtd->eraseregions[i].numblocks);
return 0;
}
EXPORT_SYMBOL_GPL(spi_nor_scan);
static const struct flash_info *spi_nor_match_id(const char *name)
{
const struct flash_info *id = spi_nor_ids;
while (id->name) {
if (!strcmp(name, id->name))
return id;
id++;
}
return NULL;
}
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Huang Shijie <shijie8@gmail.com>");
MODULE_AUTHOR("Mike Lavender");
MODULE_VERSION(SUNXI_NOR_MODULE_VERSION);
MODULE_DESCRIPTION("framework for SPI NOR");