sdk-hwV1.3/lichee/brandy-2.0/spl/drivers/mmc/sun50iw10p1/mmc.c

1340 lines
29 KiB
C

/*
* (C) Copyright 2013-2016
* Allwinner Technology Co., Ltd. <www.allwinnertech.com>
*
*/
/*
* (C) Copyright 2007-2012
* Allwinner Technology Co., Ltd. <www.allwinnertech.com>
*
* Description: MMC driver for General mmc operations
* Author: Aaron <leafy.myeh@allwinnertech.com>
* Date: 2012-2-3 14:18:18
*/
#include "mmc_def.h"
#include "mmc_bsp.h"
#include "mmc.h"
#include <private_boot0.h>
/* Set block count limit because of 16 bit register limit on some hardware*/
#ifndef CONFIG_SYS_MMC_MAX_BLK_COUNT
#define CONFIG_SYS_MMC_MAX_BLK_COUNT 65535
#endif
unsigned char mmc_arg_addr[SUNXI_SDMMC_PARAMETER_REGION_SIZE_BYTE];
extern int mmc_config_addr; /*extern const boot0_file_head_t BT0_head; */
static struct mmc *mmc_devices[MAX_MMC_NUM];
int mmc_send_cmd(struct mmc *mmc, struct mmc_cmd *cmd, struct mmc_data *data)
{
return mmc->send_cmd(mmc, cmd, data);
}
int mmc_send_status(struct mmc *mmc, int timeout)
{
struct mmc_cmd cmd;
int err;
cmd.cmdidx = MMC_CMD_SEND_STATUS;
cmd.resp_type = MMC_RSP_R1;
cmd.cmdarg = mmc->rca << 16;
cmd.flags = 0;
do {
err = mmc_send_cmd(mmc, &cmd, NULL);
if (err) {
mmcinfo("mmc %u Send status failed\n",
mmc->control_num);
return err;
} else if (cmd.response[0] & MMC_STATUS_RDY_FOR_DATA)
break;
mdelay(1);
if (cmd.response[0] & MMC_STATUS_MASK) {
mmcinfo("mmc %u Status Error: 0x%08X\n",
mmc->control_num, cmd.response[0]);
return COMM_ERR;
}
} while (timeout--);
if (!timeout) {
mmcinfo("mmc %u Timeout waiting card ready\n",
mmc->control_num);
return TIMEOUT;
}
return 0;
}
int mmc_set_blocklen(struct mmc *mmc, int len)
{
struct mmc_cmd cmd;
/* don't set blocklen at ddr mode */
if ((mmc->speed_mode == HSDDR52_DDR50) || (mmc->speed_mode == HS400)) {
return 0;
}
cmd.cmdidx = MMC_CMD_SET_BLOCKLEN;
cmd.resp_type = MMC_RSP_R1;
cmd.cmdarg = len;
cmd.flags = 0;
return mmc_send_cmd(mmc, &cmd, NULL);
}
struct mmc *find_mmc_device(int dev_num)
{
if (mmc_devices[dev_num] != NULL)
return mmc_devices[dev_num];
mmcinfo("MMC Device %d not found\n", dev_num);
return NULL;
}
int mmc_read_blocks(struct mmc *mmc, void *dst, unsigned long start,
unsigned blkcnt)
{
struct mmc_cmd cmd;
struct mmc_data data;
int timeout = 1000;
if (blkcnt > 1)
cmd.cmdidx = MMC_CMD_READ_MULTIPLE_BLOCK;
else
cmd.cmdidx = MMC_CMD_READ_SINGLE_BLOCK;
if (mmc->high_capacity)
cmd.cmdarg = start;
else
cmd.cmdarg = start * mmc->read_bl_len;
cmd.resp_type = MMC_RSP_R1;
cmd.flags = 0;
data.b.dest = dst;
data.blocks = blkcnt;
data.blocksize = mmc->read_bl_len;
data.flags = MMC_DATA_READ;
if (mmc_send_cmd(mmc, &cmd, &data)) {
mmcinfo("mmc %u read blcok failed\n", mmc->control_num);
return 0;
}
if (blkcnt > 1) {
cmd.cmdidx = MMC_CMD_STOP_TRANSMISSION;
cmd.cmdarg = 0;
cmd.resp_type = MMC_RSP_R1b;
cmd.flags = 0;
if (mmc_send_cmd(mmc, &cmd, NULL)) {
mmcinfo("mmc %u fail to send stop cmd\n",
mmc->control_num);
return 0;
}
/* Waiting for the ready status */
mmc_send_status(mmc, timeout);
}
return blkcnt;
}
unsigned long mmc_bread(int dev_num, unsigned long start, unsigned blkcnt,
void *dst)
{
unsigned cur, blocks_todo = blkcnt;
struct mmc *mmc = find_mmc_device(dev_num);
if (blkcnt == 0) {
mmcinfo("mmc %u blkcnt should not be 0\n", mmc->control_num);
return 0;
}
if (!mmc) {
mmcinfo("Can not find mmc dev %d\n", dev_num);
return 0;
}
if ((start + blkcnt) > mmc->lba) {
mmcinfo("mmc %u: block number 0x%x exceeds max(0x%x)\n",
mmc->control_num, (unsigned int)(start + blkcnt),
(unsigned int)mmc->lba);
return 0;
}
if (mmc_set_blocklen(mmc, mmc->read_bl_len)) {
mmcinfo("mmc %u Set block len failed\n", mmc->control_num);
return 0;
}
do {
cur = (blocks_todo > mmc->b_max) ? mmc->b_max : blocks_todo;
if (mmc_read_blocks(mmc, dst, start, cur) != cur) {
mmcinfo("mmc %u block read failed\n", mmc->control_num);
return 0;
}
blocks_todo -= cur;
start += cur;
/*dst += cur * mmc->read_bl_len; */
dst = (char *)dst + cur * mmc->read_bl_len;
} while (blocks_todo > 0);
return blkcnt;
}
int mmc_go_idle(struct mmc *mmc)
{
struct mmc_cmd cmd;
int err;
mdelay(1);
cmd.cmdidx = MMC_CMD_GO_IDLE_STATE;
cmd.cmdarg = 0;
cmd.resp_type = MMC_RSP_NONE;
cmd.flags = 0;
err = mmc_send_cmd(mmc, &cmd, NULL);
if (err) {
mmcinfo("mmc %u go idle failed\n", mmc->control_num);
return err;
}
mdelay(2);
return 0;
}
int sd_send_op_cond(struct mmc *mmc)
{
int timeout = 1000;
int err;
struct mmc_cmd cmd;
do {
cmd.cmdidx = MMC_CMD_APP_CMD;
cmd.resp_type = MMC_RSP_R1;
cmd.cmdarg = 0;
cmd.flags = 0;
err = mmc_send_cmd(mmc, &cmd, NULL);
if (err) {
mmcinfo("mmc %u send app cmd failed\n",
mmc->control_num);
return err;
}
cmd.cmdidx = SD_CMD_APP_SEND_OP_COND;
cmd.resp_type = MMC_RSP_R3;
/*
* Most cards do not answer if some reserved bits
* in the ocr are set. However, Some controller
* can set bit 7 (reserved for low voltages), but
* how to manage low voltages SD card is not yet
* specified.
*/
cmd.cmdarg =
mmc_host_is_spi(mmc) ? 0 : (mmc->voltages & 0xff8000);
if (mmc->version == SD_VERSION_2)
cmd.cmdarg |= OCR_HCS;
err = mmc_send_cmd(mmc, &cmd, NULL);
if (err) {
mmcinfo("mmc %u send cmd41 failed\n", mmc->control_num);
return err;
}
mdelay(1);
} while ((!(cmd.response[0] & OCR_BUSY)) && timeout--);
if (timeout <= 0) {
mmcinfo("mmc %u wait card init failed\n", mmc->control_num);
return UNUSABLE_ERR;
}
if (mmc->version != SD_VERSION_2)
mmc->version = SD_VERSION_1_0;
if (mmc_host_is_spi(mmc)) { /* read OCR for spi */
cmd.cmdidx = MMC_CMD_SPI_READ_OCR;
cmd.resp_type = MMC_RSP_R3;
cmd.cmdarg = 0;
cmd.flags = 0;
err = mmc_send_cmd(mmc, &cmd, NULL);
if (err) {
mmcinfo("mmc %u spi read ocr failed\n",
mmc->control_num);
return err;
}
}
mmc->ocr = cmd.response[0];
mmc->high_capacity = ((mmc->ocr & OCR_HCS) == OCR_HCS);
mmc->rca = 0;
return 0;
}
int mmc_send_op_cond(struct mmc *mmc)
{
int timeout = 10000;
struct mmc_cmd cmd;
int err;
/* Some cards seem to need this */
mmc_go_idle(mmc);
/* Asking to the card its capabilities */
cmd.cmdidx = MMC_CMD_SEND_OP_COND;
cmd.resp_type = MMC_RSP_R3;
cmd.cmdarg = 0; /*0x40ff8000;*/ /*foresee */
cmd.flags = 0;
/*mmcinfo("mmc send op cond arg not zero !!!\n"); */
err = mmc_send_cmd(mmc, &cmd, NULL);
if (err) {
mmcinfo("mmc %u send op cond failed\n", mmc->control_num);
return err;
}
mdelay(1);
do {
cmd.cmdidx = MMC_CMD_SEND_OP_COND;
cmd.resp_type = MMC_RSP_R3;
cmd.cmdarg =
(mmc_host_is_spi(mmc) ?
0 :
(mmc->voltages &
(cmd.response[0] & OCR_VOLTAGE_MASK)) |
(cmd.response[0] & OCR_ACCESS_MODE));
if (mmc->host_caps & MMC_MODE_HC)
cmd.cmdarg |= OCR_HCS;
cmd.flags = 0;
err = mmc_send_cmd(mmc, &cmd, NULL);
if (err) {
mmcinfo("mmc %u send op cond failed\n",
mmc->control_num);
return err;
}
mdelay(1);
} while (!(cmd.response[0] & OCR_BUSY) && timeout--);
if (timeout <= 0) {
mmcinfo("mmc %u wait for mmc init failed\n", mmc->control_num);
return UNUSABLE_ERR;
}
if (mmc_host_is_spi(mmc)) { /* read OCR for spi */
cmd.cmdidx = MMC_CMD_SPI_READ_OCR;
cmd.resp_type = MMC_RSP_R3;
cmd.cmdarg = 0;
cmd.flags = 0;
err = mmc_send_cmd(mmc, &cmd, NULL);
if (err)
return err;
}
mmc->version = MMC_VERSION_UNKNOWN;
mmc->ocr = cmd.response[0];
mmc->high_capacity = ((mmc->ocr & OCR_HCS) == OCR_HCS);
mmc->rca = 1;
return 0;
}
int mmc_send_ext_csd(struct mmc *mmc, char *ext_csd)
{
struct mmc_cmd cmd;
struct mmc_data data;
int err;
/* Get the Card Status Register */
cmd.cmdidx = MMC_CMD_SEND_EXT_CSD;
cmd.resp_type = MMC_RSP_R1;
cmd.cmdarg = 0;
cmd.flags = 0;
data.b.dest = ext_csd;
data.blocks = 1;
data.blocksize = 512;
data.flags = MMC_DATA_READ;
err = mmc_send_cmd(mmc, &cmd, &data);
if (err)
mmcinfo("mmc %u send ext csd failed\n", mmc->control_num);
return err;
}
int mmc_update_phase(struct mmc *mmc)
{
if (mmc->update_phase == NULL)
return 0;
return mmc->update_phase(mmc);
}
int mmc_switch(struct mmc *mmc, u8 set, u8 index, u8 value)
{
struct mmc_cmd cmd;
int timeout = 1000;
int ret;
cmd.cmdidx = MMC_CMD_SWITCH;
cmd.resp_type = MMC_RSP_R1b;
cmd.cmdarg = (MMC_SWITCH_MODE_WRITE_BYTE << 24) | (index << 16) |
(value << 8);
cmd.flags = 0;
ret = mmc_send_cmd(mmc, &cmd, NULL);
if (ret) {
mmcinfo("mmc %u switch failed\n", mmc->control_num);
}
/* for re-update sample phase */
ret = mmc_update_phase(mmc);
if (ret) {
mmcinfo("mmc_switch: update clock failed after send cmd6\n");
return ret;
}
/* Waiting for the ready status */
mmc_send_status(mmc, timeout);
return ret;
}
int mmc_change_freq(struct mmc *mmc)
{
char ext_csd[512];
char cardtype;
int err;
int retry = 5;
mmc->card_caps = 0;
if (mmc_host_is_spi(mmc))
return 0;
/* Only version 4 supports high-speed */
if (mmc->version < MMC_VERSION_4)
return 0;
mmc->card_caps |= MMC_MODE_4BIT | MMC_MODE_8BIT;
err = mmc_send_ext_csd(mmc, ext_csd);
if (err) {
mmcinfo("mmc %u get ext csd failed\n", mmc->control_num);
return err;
}
cardtype = ext_csd[196] & 0xff;
/*retry for Toshiba emmc,for the first time Toshiba emmc change to HS */
/*it will return response crc err,so retry */
do {
err = mmc_switch(mmc, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_HS_TIMING,
1);
if (!err) {
break;
}
mmcinfo("retry mmc switch(cmd6)\n");
} while (retry--);
if (err) {
mmcinfo("mmc %u change to hs failed\n", mmc->control_num);
return err;
}
/* Now check to see that it worked */
err = mmc_send_ext_csd(mmc, ext_csd);
if (err) {
mmcinfo("mmc %u send ext csd faild\n", mmc->control_num);
return err;
}
/* No high-speed support */
if (!ext_csd[185])
return 0;
/* High Speed is set, there are two types: 52MHz and 26MHz */
if (cardtype & EXT_CSD_CARD_TYPE_HS) { /*EXT_CSD_CARD_TYPE_52 */
if (cardtype & EXT_CSD_CARD_TYPE_DDR_52) {
mmcdbg("%s: get ddr OK!\n", __FUNCTION__);
mmc->card_caps |= MMC_MODE_DDR_52MHz;
mmc->speed_mode = HSDDR52_DDR50;
} else
mmc->speed_mode = HSSDR52_SDR25;
mmc->card_caps |= MMC_MODE_HS_52MHz | MMC_MODE_HS;
} else {
mmc->card_caps |= MMC_MODE_HS;
mmc->speed_mode = DS26_SDR12;
}
return 0;
}
int mmc_switch_part(int dev_num, unsigned int part_num)
{
struct mmc *mmc = find_mmc_device(dev_num);
if (!mmc)
return -1;
return mmc_switch(mmc, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_PART_CONF,
(mmc->part_config & ~PART_ACCESS_MASK) |
(part_num & PART_ACCESS_MASK));
}
int sd_switch(struct mmc *mmc, int mode, int group, u8 value, u8 *resp)
{
struct mmc_cmd cmd;
struct mmc_data data;
/* Switch the frequency */
cmd.cmdidx = SD_CMD_SWITCH_FUNC;
cmd.resp_type = MMC_RSP_R1;
cmd.cmdarg = ((u32)mode << 31) | 0xffffff;
cmd.cmdarg &= ~(0xf << (group * 4));
cmd.cmdarg |= value << (group * 4);
cmd.flags = 0;
data.b.dest = (char *)resp;
data.blocksize = 64;
data.blocks = 1;
data.flags = MMC_DATA_READ;
return mmc_send_cmd(mmc, &cmd, &data);
}
int sd_change_freq(struct mmc *mmc)
{
int err;
struct mmc_cmd cmd;
u32 scr[2];
u32 switch_status[16];
struct mmc_data data;
int timeout;
mmc->card_caps = 0;
if (mmc_host_is_spi(mmc))
return 0;
/* Read the SCR to find out if this card supports higher speeds */
cmd.cmdidx = MMC_CMD_APP_CMD;
cmd.resp_type = MMC_RSP_R1;
cmd.cmdarg = mmc->rca << 16;
cmd.flags = 0;
err = mmc_send_cmd(mmc, &cmd, NULL);
if (err) {
mmcinfo("mmc %u Send app cmd failed\n", mmc->control_num);
return err;
}
cmd.cmdidx = SD_CMD_APP_SEND_SCR;
cmd.resp_type = MMC_RSP_R1;
cmd.cmdarg = 0;
cmd.flags = 0;
timeout = 3;
retry_scr:
data.b.dest = (char *)&scr;
data.blocksize = 8;
data.blocks = 1;
data.flags = MMC_DATA_READ;
err = mmc_send_cmd(mmc, &cmd, &data);
if (err) {
if (timeout--)
goto retry_scr;
mmcinfo("mmc %u Send scr failed\n", mmc->control_num);
return err;
}
mmc->scr[0] = __mmc_be32_to_cpu(scr[0]);
mmc->scr[1] = __mmc_be32_to_cpu(scr[1]);
switch ((mmc->scr[0] >> 24) & 0xf) {
case 0:
mmc->version = SD_VERSION_1_0;
break;
case 1:
mmc->version = SD_VERSION_1_10;
break;
case 2:
mmc->version = SD_VERSION_2;
break;
default:
mmc->version = SD_VERSION_1_0;
break;
}
if (mmc->scr[0] & SD_DATA_4BIT)
mmc->card_caps |= MMC_MODE_4BIT;
/* Version 1.0 doesn't support switching */
if (mmc->version == SD_VERSION_1_0)
return 0;
timeout = 4;
while (timeout--) {
err = sd_switch(mmc, SD_SWITCH_CHECK, 0, 1,
(u8 *)&switch_status);
if (err) {
mmcinfo("mmc %u Check high speed status faild\n",
mmc->control_num);
return err;
}
/* The high-speed function is busy. Try again */
if (!(__be32_to_cpu(switch_status[7]) & SD_HIGHSPEED_BUSY))
break;
}
/* If high-speed isn't supported, we return */
if (!(__be32_to_cpu(switch_status[3]) & SD_HIGHSPEED_SUPPORTED))
return 0;
err = sd_switch(mmc, SD_SWITCH_SWITCH, 0, 1, (u8 *)&switch_status);
if (err) {
mmcinfo("mmc %u switch to high speed failed\n",
mmc->control_num);
return err;
}
err = mmc_update_phase(mmc);
if (err) {
mmcinfo("update clock failed after send cmd6 to switch to sd high speed mode\n");
return err;
}
if ((__be32_to_cpu(switch_status[4]) & 0x0f000000) == 0x01000000) {
mmc->card_caps |= MMC_MODE_HS;
mmc->speed_mode = HSSDR52_SDR25;
}
return 0;
}
/* frequency bases */
/* divided by 10 to be nice to platforms without floating point */
static const int fbase[] = {
10000, 100000, 1000000, 10000000,
};
/* Multiplier values for TRAN_SPEED. Multiplied by 10 to be nice
* to platforms without floating point.
*/
static const int multipliers[] = {
0, /* reserved */
10, 12, 13, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 70, 80,
};
void mmc_set_ios(struct mmc *mmc)
{
mmc->set_ios(mmc);
}
void mmc_set_clock(struct mmc *mmc, u32 clock)
{
if (clock > mmc->f_max)
clock = mmc->f_max;
if (clock < mmc->f_min)
clock = mmc->f_min;
mmc->clock = clock;
mmc_set_ios(mmc);
}
void mmc_set_bus_width(struct mmc *mmc, u32 width)
{
mmc->bus_width = width;
mmc_set_ios(mmc);
}
static void dumphex32(char *name, char *base, int len)
{
__u32 i;
printf("dump %s registers:", name);
for (i = 0; i < len; i += 4) {
if (!(i & 0xf))
printf("\n0x%x : ", base + i);
printf("%x ", *(unsigned int *)(base + i));
}
printf("\n");
}
int mmc_read_info(struct mmc *mmc, void *buffer, unsigned short length)
{
int ret = 0;
int i = 0;
int retry_read = 0;
u32 sum = 0;
u32 add_sum = 0;
struct sunxi_sdmmc_parameter_region *pregion =
(struct sunxi_sdmmc_parameter_region *)buffer;
retry:
ret = mmc_read_blocks(mmc, buffer, SUNXI_SDMMC_PARAMETER_REGION_LBA_START, length);
if (ret < 0) {
printf("%s %d:read region parameter fail, %s \n", __func__, __LINE__,
(retry_read < 3) ? "retry more time" : "go err");
dumphex32("info", buffer, 16);
if (retry_read < 3) {
retry_read++;
goto retry;
} else
goto err;
}
/*check magic and sum*/
if (pregion->header.magic == SDMMC_PARAMETER_MAGIC) {
/*add_sum don't participate in check sum verificaton*/
add_sum = pregion->header.add_sum;
pregion->header.add_sum = 0;
sum = 0;
for (i = 0; i < pregion->header.length; i++) {
sum += ((unsigned char *)buffer)[i];
}
if (sum != add_sum) {
printf("%s %d:region add sum(%x) is not right(%x), %s \n",
__func__, __LINE__, sum, add_sum,
(retry_read < 3) ? "retry more time" : "go err");
if (retry_read < 3) {
retry_read++;
goto retry;
} else
goto err;
}
} else {
printf("%s %d:region magic is not right, %s %x\n", __func__, __LINE__,
(retry_read < 3) ? "retry more time" : "go err", pregion->header.magic);
if (retry_read < 3) {
retry_read++;
goto retry;
} else {
dumphex32("info", buffer, 16);
goto err;
}
}
mmcinfo("RMCA OK!\n");
return 0;
err:
mmcinfo("RMCA FAIL!\n");
return -1;
}
int mmc_startup(struct mmc *mmc)
{
int err;
u32 mult, freq;
u64 cmult, csize, capacity;
struct mmc_cmd cmd;
char ext_csd[512];
int timeout = 1000;
char *spd_name[] = { "DS26/SDR12", "HSSDR52/SDR25", "HSDDR52/DDR50",
"HS200/SDR104", "HS400" };
/* Put the Card in Identify Mode */
cmd.cmdidx =
mmc_host_is_spi(mmc) ?
MMC_CMD_SEND_CID :
MMC_CMD_ALL_SEND_CID; /* cmd not supported in spi */
cmd.resp_type = MMC_RSP_R2;
cmd.cmdarg = 0;
cmd.flags = 0;
err = mmc_send_cmd(mmc, &cmd, NULL);
if (err) {
mmcinfo("mmc %u Put the Card in Identify Mode failed\n",
mmc->control_num);
return err;
}
memcpy(mmc->cid, cmd.response, 16);
/*
* For MMC cards, set the Relative Address.
* For SD cards, get the Relatvie Address.
* This also puts the cards into Standby State
*/
if (!mmc_host_is_spi(mmc)) { /* cmd not supported in spi */
cmd.cmdidx = SD_CMD_SEND_RELATIVE_ADDR;
cmd.cmdarg = mmc->rca << 16;
cmd.resp_type = MMC_RSP_R6;
cmd.flags = 0;
err = mmc_send_cmd(mmc, &cmd, NULL);
if (err) {
mmcinfo("mmc %u send rca failed\n", mmc->control_num);
return err;
}
if (IS_SD(mmc))
mmc->rca = (cmd.response[0] >> 16) & 0xffff;
}
/* Get the Card-Specific Data */
cmd.cmdidx = MMC_CMD_SEND_CSD;
cmd.resp_type = MMC_RSP_R2;
cmd.cmdarg = mmc->rca << 16;
cmd.flags = 0;
err = mmc_send_cmd(mmc, &cmd, NULL);
/* Waiting for the ready status */
mmc_send_status(mmc, timeout);
if (err) {
mmcinfo("mmc %u get csd failed\n", mmc->control_num);
return err;
}
mmc->csd[0] = cmd.response[0];
mmc->csd[1] = cmd.response[1];
mmc->csd[2] = cmd.response[2];
mmc->csd[3] = cmd.response[3];
if (mmc->version == MMC_VERSION_UNKNOWN) {
int version = (cmd.response[0] >> 26) & 0xf;
switch (version) {
case 0:
mmc->version = MMC_VERSION_1_2;
break;
case 1:
mmc->version = MMC_VERSION_1_4;
break;
case 2:
mmc->version = MMC_VERSION_2_2;
break;
case 3:
mmc->version = MMC_VERSION_3;
break;
case 4:
mmc->version = MMC_VERSION_4;
break;
default:
mmc->version = MMC_VERSION_1_2;
break;
}
}
/* divide frequency by 10, since the mults are 10x bigger */
freq = fbase[(cmd.response[0] & 0x7)];
mult = multipliers[((cmd.response[0] >> 3) & 0xf)];
mmc->tran_speed = freq * mult;
mmc->read_bl_len = 1 << ((cmd.response[1] >> 16) & 0xf);
if (IS_SD(mmc))
mmc->write_bl_len = mmc->read_bl_len;
else
mmc->write_bl_len = 1 << ((cmd.response[3] >> 22) & 0xf);
if (mmc->high_capacity) {
csize = (mmc->csd[1] & 0x3f) << 16 |
(mmc->csd[2] & 0xffff0000) >> 16;
cmult = 8;
} else {
csize = (mmc->csd[1] & 0x3ff) << 2 |
(mmc->csd[2] & 0xc0000000) >> 30;
cmult = (mmc->csd[2] & 0x00038000) >> 15;
}
mmc->capacity = (csize + 1) << (cmult + 2);
mmc->capacity *= mmc->read_bl_len;
if (mmc->read_bl_len > 512)
mmc->read_bl_len = 512;
if (mmc->write_bl_len > 512)
mmc->write_bl_len = 512;
/* Select the card, and put it into Transfer Mode */
if (!mmc_host_is_spi(mmc)) { /* cmd not supported in spi */
cmd.cmdidx = MMC_CMD_SELECT_CARD;
cmd.resp_type = MMC_RSP_R1b;
cmd.cmdarg = mmc->rca << 16;
cmd.flags = 0;
err = mmc_send_cmd(mmc, &cmd, NULL);
if (err) {
mmcinfo("Select the card failed\n");
return err;
}
}
if (!IS_SD(mmc)) {
/*read mmc timing info, first OTA would fail*/
err = mmc_read_info(mmc, mmc_arg_addr, SUNXI_SDMMC_PARAMETER_REGION_SIZE_BYTE >> 9);
if (err < 0)
mmcinfo("mmc read timing info fail\n");
/*update host caps from timing info*/
mmc_update_host_caps_r(mmc->control_num);
}
mmc_set_clock(mmc, 25000000);
/*
* For SD, its erase group is always one sector
*/
mmc->erase_grp_size = 1;
mmc->part_config = MMCPART_NOAVAILABLE;
if (!IS_SD(mmc) && (mmc->version >= MMC_VERSION_4)) {
/* check ext_csd version and capacity */
err = mmc_send_ext_csd(mmc, ext_csd);
if (!err) {
/* update mmc version */
switch (ext_csd[192]) {
case 0:
mmc->version = MMC_VERSION_4;
break;
case 1:
mmc->version = MMC_VERSION_4_1;
break;
case 2:
mmc->version = MMC_VERSION_4_2;
break;
case 3:
mmc->version = MMC_VERSION_4_3;
break;
case 5:
mmc->version = MMC_VERSION_4_41;
break;
case 6:
mmc->version = MMC_VERSION_4_5;
break;
case 7:
mmc->version = MMC_VERSION_5_0;
break;
case 8:
mmc->version = MMC_VERSION_5_1;
break;
}
}
if (!err & (ext_csd[192] >= 2)) {
/*
* According to the JEDEC Standard, the value of
* ext_csd's capacity is valid if the value is more
* than 2GB
*/
capacity = ext_csd[212] << 0 | ext_csd[213] << 8 |
ext_csd[214] << 16 | ext_csd[215] << 24;
capacity *= 512;
if ((capacity >> 20) > 2 * 1024)
mmc->capacity = capacity;
}
/*
* Check whether GROUP_DEF is set, if yes, read out
* group size from ext_csd directly, or calculate
* the group size from the csd value.
*/
if (ext_csd[175])
mmc->erase_grp_size = ext_csd[224] * 512 * 1024;
else {
int erase_gsz, erase_gmul;
erase_gsz = (mmc->csd[2] & 0x00007c00) >> 10;
erase_gmul = (mmc->csd[2] & 0x000003e0) >> 5;
mmc->erase_grp_size =
(erase_gsz + 1) * (erase_gmul + 1);
}
/* store the partition info of emmc */
if (ext_csd[160] & PART_SUPPORT)
mmc->part_config = ext_csd[179];
}
if (IS_SD(mmc))
err = sd_change_freq(mmc);
else
err = mmc_change_freq(mmc);
if (err) {
mmcinfo("mmc %u Change speed mode failed\n", mmc->control_num);
return err;
}
/* for re-update sample phase */
err = mmc_update_phase(mmc);
if (err) {
mmcinfo("update clock failed\n");
return err;
}
mmcdbg("mmc->card_caps 0x%x, ddr caps:0x%x\n", mmc->card_caps,
mmc->card_caps & MMC_MODE_DDR_52MHz);
/* Restrict card's capabilities by what the host can do */
mmc->card_caps &= mmc->host_caps;
mmcdbg("mmc->card_caps 0x%x, ddr caps:0x%x\n", mmc->card_caps,
mmc->card_caps & MMC_MODE_DDR_52MHz);
if (!(mmc->card_caps & MMC_MODE_DDR_52MHz) && !IS_SD(mmc)) {
if (mmc->speed_mode == HSDDR52_DDR50)
mmc->speed_mode = HSSDR52_SDR25;
else
mmc->speed_mode = DS26_SDR12;
}
if (IS_SD(mmc)) {
if (mmc->card_caps & MMC_MODE_4BIT) {
cmd.cmdidx = MMC_CMD_APP_CMD;
cmd.resp_type = MMC_RSP_R1;
cmd.cmdarg = mmc->rca << 16;
cmd.flags = 0;
err = mmc_send_cmd(mmc, &cmd, NULL);
if (err) {
mmcinfo("mmc %u send app cmd failed\n",
mmc->control_num);
return err;
}
cmd.cmdidx = SD_CMD_APP_SET_BUS_WIDTH;
cmd.resp_type = MMC_RSP_R1;
cmd.cmdarg = 2;
cmd.flags = 0;
err = mmc_send_cmd(mmc, &cmd, NULL);
if (err) {
mmcinfo("mmc %u sd set bus width failed\n",
mmc->control_num);
return err;
}
mmc_set_bus_width(mmc, 4);
}
if (mmc->card_caps & MMC_MODE_HS)
mmc->tran_speed = 50000000;
else
mmc->tran_speed = 25000000;
} else {
if (mmc->card_caps & MMC_MODE_8BIT) {
/* Set the card to use 8 bit */
if ((mmc->card_caps & MMC_MODE_DDR_52MHz)) {
mmcdbg("8bit ddr!!! \n");
/* Set the card to use 8 bit ddr */
err = mmc_switch(mmc, EXT_CSD_CMD_SET_NORMAL,
EXT_CSD_BUS_WIDTH,
EXT_CSD_BUS_DDR_8);
if (err) {
mmcinfo("mmc %u switch bus width failed\n",
mmc->control_num);
return err;
}
/*mmc_set_bus_mode(mmc,1); */
mmc_set_bus_width(mmc, 8);
} else {
/* Set the card to use 8 bit */
err = mmc_switch(mmc, EXT_CSD_CMD_SET_NORMAL,
EXT_CSD_BUS_WIDTH,
EXT_CSD_BUS_WIDTH_8);
if (err) {
mmcinfo("mmc %u switch bus width8 failed\n",
mmc->control_num);
return err;
}
mmc_set_bus_width(mmc, 8);
}
} else if (mmc->card_caps & MMC_MODE_4BIT) {
if ((mmc->card_caps & MMC_MODE_DDR_52MHz)) {
mmcdbg("4bit bus ddr!!! \n");
/* Set the card to use 4 bit ddr */
err = mmc_switch(mmc, EXT_CSD_CMD_SET_NORMAL,
EXT_CSD_BUS_WIDTH,
EXT_CSD_BUS_DDR_4);
if (err) {
mmcinfo("mmc %u switch bus width failed\n",
mmc->control_num);
return err;
}
/*mmc_set_bus_mode(mmc,1); */
mmc_set_bus_width(mmc, 4);
} else {
/* Set the card to use 4 bit */
err = mmc_switch(mmc, EXT_CSD_CMD_SET_NORMAL,
EXT_CSD_BUS_WIDTH,
EXT_CSD_BUS_WIDTH_4);
if (err) {
mmcinfo("mmc %u switch bus width failed\n",
mmc->control_num);
return err;
}
mmc_set_bus_width(mmc, 4);
}
}
if (mmc->card_caps & MMC_MODE_DDR_52MHz) {
mmc->tran_speed = 52000000;
} else if (mmc->card_caps & MMC_MODE_HS) {
if (mmc->card_caps & MMC_MODE_HS_52MHz)
mmc->tran_speed = 52000000;
else
mmc->tran_speed = 26000000;
} else {
mmc->tran_speed = 26000000;
}
}
mmcdbg("%s: set clock %u\n", __FUNCTION__, mmc->tran_speed);
mmc_set_clock(mmc, mmc->tran_speed);
/* fill in device description */
mmc->blksz = mmc->read_bl_len;
/*mmc->lba = mmc->capacity/mmc->read_bl_len;*/ /*for compiler error */
mmc->lba = mmc->capacity >> 9;
if (!IS_SD(mmc)) {
switch (mmc->version) {
case MMC_VERSION_1_2:
mmcinfo("MMC 1.2\n");
break;
case MMC_VERSION_1_4:
mmcinfo("MMC 1.4\n");
break;
case MMC_VERSION_2_2:
mmcinfo("MMC 2.2\n");
break;
case MMC_VERSION_3:
mmcinfo("MMC 3.0\n");
break;
case MMC_VERSION_4:
mmcinfo("MMC 4.0\n");
break;
case MMC_VERSION_4_1:
mmcinfo("MMC 4.1\n");
break;
case MMC_VERSION_4_2:
mmcinfo("MMC 4.2\n");
break;
case MMC_VERSION_4_3:
mmcinfo("MMC 4.3\n");
break;
case MMC_VERSION_4_41:
mmcinfo("MMC 4.41\n");
break;
case MMC_VERSION_4_5:
mmcinfo("MMC 4.5\n");
break;
case MMC_VERSION_5_0:
mmcinfo("MMC 5.0\n");
break;
case MMC_VERSION_5_1:
mmcinfo("MMC 5.1\n");
break;
default:
mmcinfo("Unknow MMC ver\n");
break;
}
}
mmcinfo("%s %u bit\n", spd_name[mmc->speed_mode], mmc->bus_width);
mmcinfo("%u Hz\n", mmc->clock);
mmcinfo("%u MB\n", mmc->lba >> 11);
return 0;
}
int mmc_send_if_cond(struct mmc *mmc)
{
struct mmc_cmd cmd;
int err;
cmd.cmdidx = SD_CMD_SEND_IF_COND;
/* We set the bit if the host supports voltages between 2.7 and 3.6 V */
cmd.cmdarg = ((mmc->voltages & 0xff8000) != 0) << 8 | 0xaa;
cmd.resp_type = MMC_RSP_R7;
cmd.flags = 0;
err = mmc_send_cmd(mmc, &cmd, NULL);
if (err) {
mmcinfo("mmc %u send if cond failed\n", mmc->control_num);
return err;
}
if ((cmd.response[0] & 0xff) != 0xaa)
return UNUSABLE_ERR;
else
mmc->version = SD_VERSION_2;
return 0;
}
int mmc_init(struct mmc *mmc)
{
int err;
/*
*struct boot_sdmmc_private_info_t *priv_info =
* (struct boot_sdmmc_private_info_t
* *)(mmc_config_addr + SDMMC_PRIV_INFO_ADDR_OFFSET);
*/
struct boot_sdmmc_private_info_t *priv_info =
&((struct sunxi_sdmmc_parameter_region *)mmc_arg_addr)->info;
if (mmc->has_init) {
mmcinfo("mmc %u Has init\n", mmc->control_num);
return 0;
}
err = mmc->init(mmc);
if (err) {
mmcinfo("mmc %u host init failed\n", mmc->control_num);
return err;
}
mmc_set_bus_width(mmc, 1);
mmc_set_clock(mmc, 1);
retry_card:
/* Reset the Card */
err = mmc_go_idle(mmc);
if (err) {
mmcinfo("mmc %u reset card failed\n", mmc->control_num);
return err;
}
/* The internal partition reset to user partition(0) at every CMD0 */
mmc->part_num = 0;
if (priv_info->card_type == CARD_TYPE_SD) {
mmcinfo("***Try SD card %u***\n", mmc->control_num);
/* Test for SD version 2 */
err = mmc_send_if_cond(mmc);
/* Now try to get the SD card's operating condition */
err = sd_send_op_cond(mmc);
if (err) {
mmcinfo("SD card %u Card did not respond to voltage select!\n",
mmc->control_num);
mmcinfo("***SD/MMC %u init error!!!***\n",
mmc->control_num);
return UNUSABLE_ERR;
}
} else if (priv_info->card_type == CARD_TYPE_MMC) {
/* If the command timed out, we check for an MMC card */
mmcinfo("***Try MMC card %u***\n", mmc->control_num);
err = mmc_send_op_cond(mmc);
if (err) {
mmcinfo("MMC card %u Card did not respond to voltage select!\n",
mmc->control_num);
mmcinfo("***SD/MMC %u init error!!!***\n",
mmc->control_num);
return UNUSABLE_ERR;
}
} else if (mmc->control_num == 2) {
mmcinfo("Wrong media type 0x%x, but host sdc2, try mmc first\n",
priv_info->card_type);
/* If the command timed out, we check for an MMC card */
mmcinfo("***Try MMC card %u***\n", mmc->control_num);
err = mmc_send_op_cond(mmc);
if (err) {
mmcinfo("MMC card %u Card did not respond to voltage select!\n",
mmc->control_num);
mmcinfo("***SD/MMC %u init error!!!***\n",
mmc->control_num);
priv_info->card_type = CARD_TYPE_SD;
goto retry_card;
}
} else {
mmcinfo("Wrong media type 0x%x\n", priv_info->card_type);
mmcinfo("***Try SD card %u***\n", mmc->control_num);
/* Test for SD version 2 */
err = mmc_send_if_cond(mmc);
/* Now try to get the SD card's operating condition */
err = sd_send_op_cond(mmc);
/* If the command timed out, we check for an MMC card */
if (err) {
mmcinfo("***Try MMC card %u***\n", mmc->control_num);
err = mmc_send_op_cond(mmc);
if (err) {
mmcinfo("mmc %u Card did not respond to voltage select!\n",
mmc->control_num);
mmcinfo("***SD/MMC %u init error!!!***\n",
mmc->control_num);
return UNUSABLE_ERR;
}
}
}
err = mmc_startup(mmc);
if (err) {
mmcinfo("***SD/MMC %u init error!!!***\n", mmc->control_num);
mmc->has_init = 0;
} else {
mmc->has_init = 1;
mmcinfo("***SD/MMC %u init OK!!!***\n", mmc->control_num);
}
return err;
}
int mmc_register(int dev_num, struct mmc *mmc)
{
mmc_devices[dev_num] = mmc;
if (!mmc->b_max)
mmc->b_max = CONFIG_SYS_MMC_MAX_BLK_COUNT;
return mmc_init(mmc);
}
int mmc_unregister(int dev_num)
{
mmc_devices[dev_num] = NULL;
mmcdbg("mmc%d unregister\n", dev_num);
return 0;
}